Все о тюнинге авто

Представления о строении металлоферментов и других биокомплексных соединений (гемоглобин, цитохромы, кобаламины). Физико-химические принципы транспорта кислорода гемоглобином. Тема работы: Элементарные стадии с участием координационных и металлоорганическ

Основная реакция замещения в водных растворах - обмен молекул воды (22) - была изучена для большого числа ионов металлов (рис. 34). Обмен молекул воды координационной сферы иона металла с основной массой молекул воды, присутствующей в качестве растворителя, для большинства металлов протекает очень быстро, и поэтому скорость такой реакции удалось изучить главным образом методом релаксации. Метод заключается в нарушении равновесия системы, например резким повышением температуры. При новых условиях (более высокой температуре) система уже не будет находиться в равновесии. Затем измеряют скорость установления равновесия. Если можно изменить температуру раствора в течение 10 -8 сек , то можно измерить скорость реакции, которая требует для своего завершения промежутка времени больше чем 10 -8 сек .

Можно измерить также скорость замещения координированных молекул воды у различных ионов металлов лигандами SO 2- 4 , S 2 O 3 2- , EDTA и др. (26). Скорость такой реакции

зависит от концентрации гидратированного иона металла и не зависит от концентрации входящего лиганда, что позволяет использовать для описания скорости этих систем уравнение первого порядка (27). Во многих случаях скорость реакции (27) для данного иона металла не зависит от природы входящего лиганда (L), будь то молекулы H 2 O или ионы SO 4 2- , S 2 O 3 2- или EDTA.

Это наблюдение, а также тот факт, что в уравнение скорости этого процесса не включена концентрация входящего лиганда, позволяют предполагать, что эти реакции протекают по механизму, в котором медленная стадия заключается в разрыве связи между ионом металла и водой. Получающееся соединение, вероятно, затем быстро координирует находящиеся поблизости лиганды.

В разд. 4 данной главы было указано, что более высокозаряженные гидратированные ионы металла, такие, как Al 3+ и Sc 3+ , обменивают молекулы воды медленнее, чем ионы M 2+ и M + ; это дает основание предполагать, что в стадии, определяющей скорость всего процесса, важную роль играет разрыв связей. Выводы, полученные в этих исследованиях, не окончательны, но они дают основание думать, что в реакциях замещения гидратированных ионов металлов важное значение имеют S N 1-процессы.

Вероятно, самыми изученными комплексными соединениями являются аммины кобальта(III). Их устойчивость, легкость приготовления и медленно текущие с ними реакции делают их особенно удобными для кинетического изучения. Так как исследования этих комплексов были проведены исключительно в водных растворах, вначале следует рассмотреть реакции этих комплексов с молекулами растворителя - воды. Было установлено, что вообще молекулы аммиака или аминов, координированные ионом Co(III), настолько медленно замещаются молекулами воды, что обычно рассматривают замещение иных лигандов, а не аминов.

Была изучена скорость реакций типа (28) и найдено, что она первого порядка относительно комплекса кобальта (X - один из множества возможных анионов).

Так как в водных растворах концентрация H 2 O всегда равна примерно 55,5 М , то нельзя определить влияние изменения концентрации молекул воды на скорость реакции. Уравнения скорости (29) и (30) для водного раствора экспериментально не различимы, так как к просто равно k" = k". Следовательно, по уравнению скорости реакции нельзя сказать, будет ли H 2 O участвовать в стадии, определяющей скорость процесса. Ответ на вопрос, протекает ли эта реакция по механизму S N 2 с заменой иона X на молекулу H 2 O или по механизму S N 1, предусматривающему вначале диссоциацию с последующим присоединением молекулы H 2 O, нужно получить при помощи других экспериментальных данных.

Решения этой задачи можно добиться двумя типами экспериментов. Скорость гидролиза (замещение одного иона Cl - на молекулу воды) транс - + примерно в 10 3 раз больше скорости гидролиза 2+ . Увеличение заряда комплекса приводит к усилению связей металл - лиганд, а следовательно, и к торможению разрыва этих связей. Следует также учитывать притяжение входящих лигандов и облегчение протекания реакции замещения. Так как обнаружено уменьшение скорости по мере увеличения заряда комплекса, то в данном случае кажется более вероятным диссоциативный процесс (S N 1).

Другой способ доказательства основан на изучении гидролиза серии комплексов подобных транс - + . В этих комплексах молекула этилендиамина заменена аналогичными диаминами, в которых атомы водорода у атома углерода замещены на группы CH 3 . Комплексы, содержащие замещенные диамины, реагируют быстрее, чем этилендиаминный комплекс. Замена атомов водорода на CH 3 -группы увеличивает объем лиганда, что затрудняет атаку атома металла другим лигандом. Эти стерические препятствия замедляют реакцию по механизму S N 2. Наличие вблизи атома металла объемистых лигандов способствует диссоциативному процессу, так как удаление одного из лигандов понижает их скопление у атома металла. Наблюдаемое увеличение скорости гидролиза комплексов с объемистыми лигандами является хорошим доказательством протекания реакции по механизму S N 1.

Итак, в результате многочисленных исследований ацидоаминных комплексов Co(II) оказалось, что замена ацидогрупп молекулами воды является по своему характеру диссоциативным процессом. Связь атом кобальта - лиганд удлиняется до некоторой критической величины прежде, чем молекулы воды начнут входить в комплекс. В комплексах, имеющих заряд 2+ и выше, разрыв связи кобальт - лиганд весьма затруднен, и вхождение молекул воды начинает играть более важную роль.

Было обнаружено, что замена ацидо-группы (Х -) в комплексе кобальта(III) на иную группу, чем молекула H 2 O, (31) проходит вначале через замещение ее молекулой

растворителя - воды с последующей заменой ее на новую группу Y (32).

Таким образом, во многих реакциях с комплексами кобальта(III) скорость реакции (31) равна скорости гидролиза (28). Только ион гидроксила отличается от других реагентов в отношении реакционной способности с амминами Co(III). Он очень быстро реагирует с амминными комплексами кобальта(III) (примерно в 10 6 раз быстрее, чем вода) по типу реакции основного гидролиза (33).

Найдено, что эта реакция первого порядка относительно замещающего лиганда OH - (34). Общий второй порядок реакции и необычно быстрое протекание реакции позволяют предположить, что ион OH - - исключительно эффективный нуклеофильный реагент по отношению к комплексам Co(III) и что реакция протекает по механизму S N 2 через образование промежуточного соединения.

Однако это свойство OH - можно также объяснить и другим механизмом [уравнения (35), (36)]. В реакции (35) комплекс 2+ ведет себя как кислота (по Бренстеду), давая комплекс + , который является амидо -(содержащим )-соединением - основанием, соответствующим кислоте 2+ .

Затем реакция протекает по механизму S N 1 (36) с образованием пятикоординационного промежуточного соединения, далее реагирующего с молекулами растворителя, что приводит к конечному продукту реакции (37). Этот механизм реакции согласуется со скоростью реакции второго порядка и отвечает механизму S N 1. Так как реакция в стадии, определяющей скорость, включает основание, сопряженное первоначальному комплексу - кислоте, то этому механизму дано обозначение S N 1СВ.

Определить, какой из этих механизмов лучше всего объясняет экспериментальные наблюдения, очень трудно. Однако есть убедительные доказательства, подтверждающие гипотезу S N 1CB. Лучшие аргументы в пользу этого механизма следующие: октаэдрические комплексы Со(III) вообще реагируют по диссоциативному механизму S N 1, и нет никаких убедительных доводов, почему бы ион OH - должен обусловить процесс S N 2. Установлено, что ион гидроксила - слабый нуклеофильный реагент в реакциях с Pt(II), и поэтому кажется беспричинной его необычная реакционная способность по отношению к Co(III). Реакции с соединениями кобальта(III) в невоДных средах служат прекрасным доказательством образования пятикоординационных промежуточных соединений, предусматриваемых механизмом S N 1 СВ.

Окончательным же доказательством является тот факт, что при отсутствии в комплексе Co(III) связей N - Н он медленно реагирует с ионами ОН - . Это, конечно, дает основание считать, что для скорости реакции кислотно-основные свойства комплекса важнее нуклеофильных свойств ОН". Эта реакция основного гидролиза амминных комплексов Со(III) является иллюстрацией того факта, что кинетические данные часто можно интерпретировать не только одним способом, и, чтобы исключить тот или иной возможный механизм, нужно осуществить довольно тонкий эксперимент.

В настоящее время исследованы реакции замещения большого числа октаэдрических соединений. Если рассмотреть их механизмы реакций, то чаще всего встречается диссоциативный процесс. Этот результат не является неожиданным, так как шесть лигандов оставляют мало места вокруг центрального атома для присоединения к нему других групп. Известно лишь немного примеров, когда доказано возникновение семикоординационного промежуточного соединения или обнаружено влияние внедряющегося лиганда. Поэтому S N 2 механизм нельзя полностью отвергнуть в качестве возможного пути реакций замещения в октаэдрических комплексах.

Лиганды - ионы или молекулы, которые непосредственно связаны с комплексообразователем и являются донорами электронных пар. Эти электроноизбыточные системы, имеющие свободные и подвижные электронные пары, могут быть донорами электронов, например: Соединения р-элементов проявляют комплексообразующие свойства и выступают в комплексном соединении в качестве лигандов. Лигандами могут быть атомы и молекулы

(белка, аминокислот, нуклеиновых кислот, углеводов). Эффективность и прочность донорно-акцкпторного взаимодействия лиганда и комплексообразователя определяется их поляризуемостью-способностью частицы трансформировать свои электронные оболочки под внешним воздействием.
Константа нестойкости:

Кнест= 2 /

К уст=1/Кнест

Реакции замещения лигандов

Одна из важнейших стадий в металлокомплексном катализе – взаимодействие субстрата Yс комплексом – происходит по трем механизмам:

а) Замещение лиганда растворителем. Обычно такую стадию изображают как диссоциацию комплекса

Суть процесса в большинстве случаев – замещение лиганда LрастворителемS, который далее легко замещается молекулой субстратаY

б) Присоединение нового лиганда по свободной координате с образованием ассоциата с последующей диссоциацией замещаемого лиганда

в) Синхронное замещение (типа S N 2) без образования интермедиата

Представления о строении металлоферментов и других биокомплексных соединений (гемоглобин, цитохромы, кобаламины). Физико-химические принципы транспорта кислорода гемоглобином.

Особенности строения металлоферментов.

Биокомплексные соединения значительно различаются по устойчивости. Роль металла в таких комплексах высокоспецифична: замена его даже на близкий по свойствам элемент приводит к значительной или полной утрате физиологической активности.

1. В12: содержит 4 пиррольных кольца,ион кобальта и группы CN-. Способствует переносу атома H на атом С в обмен на какую либо группу, участвует в процессе образования дезоксирибозы из рибозы.

2. гемоглобин:имеет четвертичную структуру. Четыре полипептидные цепи, соединённые вместе, образуют почти правильную форму шара, где каждая цепь контактирует с двумя цепями.

Гемоглобин - дыхательный пигмент, придающий крови красный цвет. Гемоглобин состоит из белка и железопорфирина и переносит кислород от органов дыхания к тканям тела и углекислый газ от них к дыхательным органам.
Цитохромы - сложные белки (гемопротеиды), осуществляющие в живых клетках ступенчатый перенос электронов и/или водорода от окисляемых органических веществ к молекулярному кислороду. При этом образуется богатое энергией соединение АТФ.
Кобаламины - природные биологически активные кобальторганические соединения. Структурной основой К. является корриновое кольцо, состоящее из 4 пиррольных ядер, у которых атомы азота связаны с центральным атомом кобальта.

Физико-химические принципы транспорта кислорода гемоглобином - Атом (Fe (II)) (один из компонентов гемоглобина) способен образовывать 6 координационных связей. Из них четыре используются для закрепления самого атома Fe(II) в геме, пятая связь - для связывания гема с белковой субъединицей, а с помощью шестой связи происходит связывание молекулы О 2 или СО 2.

Металло-лигандный гомеостаз и причины его нарушения. Механизм токсического действия тяжелых металлов и мышьяка на основе теории жестких и мягких кислот и оснований (ЖМКО). Термодинамические принципы хелатотерапии. Механизм цитотоксического действия соединений платины.

В организме непрерывно происходит образование и разрушение биокомплексов из катионов металлов и биолигандов (порфинов, аминокислот, белков, полинуклеотидов), в состав которых входят донорные атомы кислорода, азота, серы. Обмен с окружающей средой поддерживает концентрации этих веществ на постоянном уровне, обеспечивая металло-лигандный гомеостаз . Нарушение сложившегося равновесия ведет к ряду патологических явлений – металлоизбыточным и металлодефицитным состояниям. В качестве примера можно привести неполный перечень заболеваний, связанных с изменением металло-лигандного баланса только для одного иона – катиона меди. Дефицит этого элемента в организме вызывает синдром Менкеса, синдром Морфана, болезнь Вильсона-Коновалова, цирроз печени, эмфизему лёгких, аорто- и артериопатии, анемии. Избыточное поступление катиона может вести к серии заболеваний самых разных органов: ревматизму, бронхиальной астме, воспалению почек и печени, инфаркту миокарда и т.д., называемых гиперкупремиями. Известен и профессиональный гиперкупреоз – медная лихорадка.

Циркуляция тяжелых металлов происходит частично в виде ионов или комплексов с аминокислотами, жирными кислотами. Однако ведущая роль в транспорте тяжелых металлов принадлежит белкам, образующим с ними прочную связь.

Они фиксируются на клеточных оболочках, блокируют тиоловые группы мембранных протеинов – 50% из них белки-ферменты, нарушают стабильность белково-липидных комплексов клеточной оболочки и ее проницаемость, вызывая выход из клетки калия и проникновение в нее натрия и воды.

Подобное действие этих ядов, активно фиксирующихся на красных кровяных клетках, приводит к нарушению целостности мембран эритроцитов, торможению в них процессов аэробного гликолиза и метаболизма вообще и накоплению гемолитически активной перекиси водорода вследствие торможения пероксидазы в частности, что приводит к развитию одного из характерных симптомов отравления соединениями этой группы – к гемолизу.

Распределение и депонирование тяжелых металлов и мышьяка происходят практически во всех органах. Особый интерес представляет способность этих веществ накапливаться в почках, что объясняется богатым содержанием в почечной ткани тиоловых групп, наличием в ней белка – металлобионина, содержащего большое количество тиоловых групп, что способствует длительному депонированию ядов. Высокой степенью накопления токсических соединений этой группы отличается и ткань печени, также богатая тиоловыми группами и содержащая металлобионин. Срок депонирования, например, ртути может достигать 2 мес и более.

Выделение тяжелых металлов и мышьяка происходит в разных пропорциях через почки, печень (с желчью), слизистую оболочку желудка и кишечника (с калом), потовые и слюнные железы, легкие, что сопровождается, как правило, поражением выделительных аппаратов этих органов и проявляется соответствующей клинической симптоматикой.

Смертельная доза для растворимых соединений ртути 0,5 г, для каломели 1–2 г, для медного купороса 10 г, для ацетата свинца 50 г, для свинцовых белил 20 г, для мышьяка 0,1–0,2 г.

Токсической считается концентрация ртути в крови более 10 мкг/л (1γ%), в моче более 100 мкг/л (10γ%), концентрация меди в крови более 1600 мкг/л (160γ%), мышьяка более 250 мкг/л (25γ%) в моче.

Хелатотерапия – это выведение токсичных частиц

из организма, основанное на хелатировании их

комплексонатами s–элементов.

Препараты, применяемые для выведения

инкорпорированных в организме токсичных

частиц, называют детоксикантами.

Комплексные соединения. Их строение на основе координационной теории А. Вернера. Комплексный ион, его заряд. Катионные, анионные, нейтральные комплексы. Номенклатура, примеры.


Реакции замещения лигандов. Константа нестойкости комплексного иона, константа устойчивости.

К нестойкости- это отношение произведений концентрации распавшихся ионов на нераспавшееся количество.

К уст= 1/ К нест (обратная величина)

Вторичная диссоциация - распад внутренней сферы комплекса на составляющие ее компоненты.

43.Конкуренция за лиганд или за комплексообразователь: изолированное и совмещенное равновесия замещения лигандов. Общая константа совмещенного равновесия замещения лигандов.

В результате конкуренции протон разрушает достаточно прочный комп­лекс, образуя слабо диссоциирующее вещество - воду.

Cl + NiS0 4 +4NH 3 ^ S0 4 +AgCl I

Это уже пример конкуренции лиганда за комплексообразователь, с образованием более прочного комплекса (K H + =9,3-1(Г 8 ; К Н [М(Ш 3) 6 ] 2+ = 1,9-Ю -9) и труднорастворимого соединения AgCl - K s = 1,8 10" 10

Представления о строении металлоферментов и других биокомплексных соединений (гемоглобин, цитохромы, кобаламины). Физико-химические принципы транспорта кислорода гемоглобином






Кобаламины. Витами́нами B 12 называют группу кобальтсодержащих биологически активных веществ, называемых кобаламинами. К ним относят собственно цианокобаламин , гидроксикобаламин и две коферментные формы витамина B 12: метилкобаламин и 5-дезоксиаденозилкобаламин.

Иногда в более узком смысле витамином B 12 называют цианокобаламин, так как именно в этой форме в организм человека поступает основное количество витамина B 12 , не упуская из вида то, что он не синоним с B 12 , и несколько других соединений также обладают B 12 -витаминной активностью . Витамин B 12 также называется внешним фактором Касла.

B 12 имеет самую сложную по сравнению с другими витаминами химическую структуру, основой которой является корриновоекольцо. Коррин во многом похож на порфирин (сложная химическая структура, входящая в состав гема, хлорофилла ицитохромов), но отличается от порфирина тем, что два пиррольных цикла в составе коррина соединены между собой непосредственно, а не метиленовым мостиком. В центре корриновой структуры располагается ион кобальта. Четыре координационных связи кобальт образует с атомами азота. Ещё одна координационная связь соединяет кобальт сдиметилбензимидазольным нуклеотидом. Последняя, шестая координационная связь кобальта остаётся свободной: именно по этой связи и присоединяется цианогруппа, гидроксильная группа, метильный или 5"-дезоксиаденозильный остаток с образованием четырёх вариантов витамина B 12 , соответственно. Ковалентная связь углерод-кобальт в структуре цианокобаламина - единственный известный в живой природе пример ковалентной связи переходный металл-углерод.

Реакции координационных соединений всегда происходят в координационной сфере металла со связанными в ней лигандами. Поэтому очевидно, что для того, чтобы вообще что-то происходило, лиганды должны уметь в эту сферу попадать. Это может происходить двумя способами:

  • координационно-ненасыщенный комплекс связывает новый лиганд
  • в уже укомплектованной координационной сфере один лиганд меняется на другой.

С первым способом мы уже ознакомились, когда обсуждали координационную ненасыщенность и 18-электронное правило. Вторым займемся здесь.

Замещаться могут в любых комбинациях лиганды любых типов

Но обычно действует негласное правило – количество занятых координационных мест не изменяется. Иными словами, при замещении не меняется счет электронов. Замещение лиганда одного типа на другой вполне возможно и часто происходит в реальности. Обратим только внимание на корректное обращение с зарядами, когда меняется L-лиганд на X-лиганд и наоборот. Если мы про это забудем, то изменится степень окисления металла, а замещение лигандов не является окислительно-восстановительным процессом (если найдете или придумаете противный пример, дайте знать – зачет автоматом сразу, если я не смогу доказать, что вы ошиблись, впочем даже и в этом случае гарантирую положительный вклад в карму) .

Замещение с участием гапто-лигандов

С более сложными лигандами сложностей не больше – нужно просто помнить довольно очевидное правило: количество лигандных мест (то есть общее количество лигандов или лигандных центров X- или L-типов) сохраняется. Это непосредственно следует из сохранения счета электронов. Вот самоочевидные примеры.

Обратим внимание на последний пример. Исходный реагент для этой реакции дихлорид железа FeCl 2 . Еще недавно мы бы сказали: “Это просто соль, причем тут координационная химия?”. Но больше мы не будем себе позволять такое невежество. В химии переходных металлов не бывает “просто солей”, любые производные суть координационные соединения, к которым применимы все рассуждения про счет электронов, d-конфигурацию, координационную насыщенность и т.п. Дихлорид железа, так как мы его привыкли писать, оказался бы комплексом Fe(2+) типа MX 2 с конфигурацией d 6 и числом электронов 10. Маловато что-то! Нормально? Ведь мы уже разобрались, что лиганды бывают неявные. Чтобы сделать реакцию, нам нужен растворитель, и для таких реакций это, скорее всего, ТГФ. Растворение кристаллической соли железа в ТГФ и происходит именно потому, что донорный растворитель занимает свободные места, и энергия этого процесса компенсирует разрушение кристаллической решетки. Мы не смогли бы растворить эту “соль” в растворителе, не предоставляющем услуг сольватации металла за счет основности Льюиса. В данном случае, и в миллионе подобных, сольватация это просто координационное взаимодействие. Напишем, просто для определенности результат сольватации в виде комплекса FeX 2 L 4 , у которого два иона хлора остаются в координационной сфере в виде двух X-лигандов, хотя скорее всего они тоже вытеснены молекулами донорного растворителя с образованием заряженного комплекса FeL 6 2+ . В данном случае это не так важно. И так, и эдак мы можем спокойно считать, что у нас 18-электронный комплекс и слева, и справа.

Замещение, присоединение и диссоциация лигандов тесно и неразрывно связаны

Если мы помним органическую химию, то там было два механизма замещения при насыщенном атоме углерода – SN1 и SN2. В первом замещение происходило двухстадийно: старый заместитель сначала уходил, оставляя вакантную орбиталь на атоме углерода, на которую следом заходил новый заместитель с парой электронов. Второй механизм предполагал, что уход и приход осуществляются одновременно, согласованно, а процесс был одностадийным.

В химии координационных соединений вполне можно представить нечто похожее. Но появляется и третья возможность, которой не было у насыщенного атома углерода – сначала присоединяем новый лиганд, потом отцепляем старый. Сразу становится понятно, что этот третий вариант вряд ли возможен, если комплекс уже имеет 18 электронов и является координационно насыщенным. Но вполне возможен, если число элетронов 16 или меньше, то есть комплекс ненасыщен. Тут же вспомним и очевидную аналогию из органической химии – нуклеофильное замещение у ненасыщенного атома углерода (в ароматическом кольце или у карбонильного углерода) тоже идут сначала как присоединение нового нуклеофила, и потом отщепление старого.

Итак, если у нас 18 электронов, то замещение идет как отщепление-присоединение (любители “умных” словечек используют термин диссоциативно-ассоциативный или просто диссоциативный механизм). Другой путь потребовал бы расширения координационной сферы до счета в 20 электронов. Это не является абсолютно невозможным, и такие варианты иногда даже рассматриваются, но это точно очень невыгодно и каждый раз в случае подозрения на такой путь требуются очень весомые доказательства. В большинстве таких историй исследователи в конце концов приходили к выводу, что они что-то просмотрели или не учли, и ассоциативный механизм отвергался. Итак, если исходный комплекс с 18 электронами, то сначала один лиганд должен уйти, затем на его место прийти новый, например:

Если мы хотим ввести в координационную сферу гапто-лиганд, занимающий несколько мест, то сначала мы должны их все освободить. Как правило, это происходит только в достаточно жестких условиях, например, чтобы в карбониле хрома заменить три карбонила на η 6 -бензол, смесь много часов нагревают под давлением, время от времени стравливая высвободившийся оксид углерода. Хотя в схеме нарисована диссоциация трех лигандов с образованием очень ненасыщенного комплекса с 12 электронами, в реальности реакция, скорее всего происходит стадийно, уходит по одному карбонилу, а бензол заходит в сферу, постепенно увеличивая гаптность, через стадии минус CO – дигапто – минус еще одна CO – тетрагапто – минус еще одна CO – гексагапто, так чтобы меньше 16 электронов не получалось.

Итак, если у нас комплекс с 16 электронами или меньше, то замещение лиганда, скорее всего, идет как присоединение-отщепление (для любителей глубокомысленных слов: ассоциативно-диссоциативный или просто ассоциативный): новый лиганд сначала приходит, затем старый уходит. Напрашиваются два очевидных вопроса: почему уходит старый лиганд, ведь 18 электронов это очень хорошо, и почему бы и в этом случает не сделать наоборот, как в 18-электронных комплексах. На первый вопрос ответить легко: у каждого металла свои привычки, и некоторые металлы, особенно из поздних, с почти полностью заполненными d-оболочками, предпочитают 16-электронный счет и соответствующие структурные типы, поэтому и выбрасывают лишний лиганд, возвращаясь к любимой конфигурации. Иногда в дело еще вмешивается пространтсвенный фактор, уже имеющиеся лиганды большие и дополнительный чувствует себя, как пассажир автобуса в час пик. Проще сойти и прогуляться пешком, чем так мучиться. Впрочем, можно выпихнуть другого пассажира, пусть погуляет, а мы поедем. Второй вопрос тоже прост – в этом случае диссоциативный механизм должен был бы сначала дать 14-электронный комплекс, а это редко бывает выгодно.

Вот пример. Для разнообразия заменим X-лиганд на L-лиганд, и не запутаемся в степенях окисления и зарядах. Еще раз: при замещении степень окисления не меняется, и если ушел X-лиганд, то потерю нужно скомпенсировать зарядом на металле. Если про это забыть, то степень окисления уменьшилась бы на 1, а это неверно.

И еще одна странность. Образовалась связь металл-пиридин за счет неподеленной пары на азоте. В органической химии в этом случае мы обязательно показали бы плюс на азоте пиридина (например, при протонировании или образовании четвертичной соли), но мы никогда не делаем это в координационной химии ни с пиридином, ни с любыми другими L-лигандами. Это страшно раздражает всех, кто привык к строгой и недвусмысленной системе рисования структур в органической химии, но придется привыкать, это не так сложно.

А точного аналога SN2 в химии координационных соединений нет, есть далекий, но он относительно редок и нам не очень нужен.

Стабильные и лабильные лиганды

Про механизмы замещения лигандов можно было бы вообще не говорить, если бы не одно чрезвычайно важное обстоятельство, которым мы будем очень много пользоваться: замещение лигандов, хоть ассоциативное, хоть диссоциативное обязательно предполагает диссоциацию старого лиганда. И нам очень важно знать, какие лиганды легко уходят, а какие уходят плохо, предпочитая оставаться в координационной сфере металла.

Как мы скоро увидим, в любой реакции часть лигандов остается в координационной сфере и не изменяется. Такие лиганды принято называть лигандами-зрителями (если не хотите таких простых, “ненаучных” слов, используйте английское слово spectator в местной транскрипции спектатор, лиганд-спектатор, только, умоляю, не спектейтор – это невыносимо!). А часть непосредственно участвует в реакции, превращаясь в продукты реакции. Такие лиганды называют акторами (не актерами!), то есть действующими. Вполне понятно, что лиганды-акторы нужно в координационную сферу металла легко вводить и выводить, иначе реакция просто застрянет. А вот лиганды-спектаторы лучше в координационной сфере оставлять по многим причинам, но хотя бы и по такой банальной как необходимость избежать излишней суеты вокруг металла. Лучше, чтобы только лиганды акторы и в необходимых количествах могли участвовать в нужном процессе. Если доступных координационных мест будет больше, чем необходимо, на них могут усесться лишние лиганды-акторы, и даже такие, которые будут участвовать в побочных реакциях, снижая выход целевого продукта и селективность. Лиганды-спектаторы кроме того почти всегда осуществляют множество важных функций, например, обеспечивают растворимость комплексов, стабилизируют правильное валентное состояние металла, особенно если оно не совсем обычное, помогают отдельным стадиям, обеспечивают стереоселективность, и т.п. Пока не расшифровываем, потому что все это мы будем обсуждать подробно, когда доберемся до конкретных реакций.

Получается, что часть лигандов в координационной сфере должна быть прочно связанной и не склонной к диссоциации и замещению другими лигандами. Такие лиганды принято называть координационно стабильными . Или просто стабильными, если из контекста ясно, что речь идет о прочности связи лигандов, а не об их собственной термодинамической стабильности, которая как раз нас совершенно не волнует.

А лиганды, которые легко и охотно входят и выходят, и всегда готовы уступить место другим, называют координационно лабильными , или просто лабильными, и здесь, к счастью, никаких двусмысленностей нет.

Циклобутадиен как лиганд

Вот, наверное, самый яркий пример того, что в координационной сфере очень нестабильная молекула может стать отличным лигандом, причем по определению координационно стабильным, хотя бы потому, что если она рискнет выйти из теплой и уютной сферы наружу, ничего хорошего ее не ждет (ценой выхода будет как раз энергия антиароматической дестабилизации).

Циклобутадиен и его производные – самые известные примеры антиароматичности. Эти молекулы существуют только при низких температурах, и в сильно искаженном виде, – чтобы уйти как можно дальше от антиароматичности, цикл искажается в вытянутый прямоугольник, снимая делокализацию и максимально ослабляя сопряжение двойных связей (по другому это называется эффектом Яна-Теллера 2 рода: вырожденная система, а циклобутадиен-квадрат представляет собой вырожденный бирадикал, вспомните круг Фроста, – искажается и снижает симметрию, чтобы снять вырождение).

Но в комплексах циклобутадиен и замещенные циклобутадиены – отличные тетрагапто-лиганды, и геометрия таких лигандов – именно квадрат, с одинаковыми длинами связей. Как и почему это происходит – отдельная история, и далеко не такая очевидная, какой ее часто подают.

Координационно лабильные лиганды

Нужно понимать, что железобетонного забора с колючей проволокой и вышками охраны между областями лабильных и стабильных лигандов нет. Во-первых, это зависит от металла, и в этом контексте неплохо работает ЖМКО. Например, поздние переходные металлы предпочитают мягкие лиганды, а ранние – жесткие. Скажем, иодид очень крепко держится за d 8 атомы палладия или платины, но редко вообще входят в координационную сферу титана или циркония в конфигурации d 0 . Но во многих комплексах металлов с не столь ярко выраженными признаками, иодид проявляет себя как вполне лабильный лиганд, легко уступающий место другим.

При прочих равных условиях:

  • L-лиганды как правило лабильнее X-лигандов;
  • лабильность X-лигандов определяется жесткостью/мягкостью и природой металла;
  • очень лабильны “неявные” лиганды: растворители и мостики в димерах и кластерах, настолько, что их присутствием в координационой сфере часто вообще пренебрегают и рисуют структуры без них с формально ненасыщенной координационой сферой;
  • дигапто-лиганды, например, алкены и алкины, ведут себя как типичные L-лиганды: они обычно вполне лабильны;
  • лиганды с большей гаптностью редко бывают лабильны, но если полигапто-лиганд может изменять способ связи на моно-гапто, он становится более лабильным, так ведут себя, например, η 3 -аллилы;
  • хелатные лиганды, образующие 5 и 6-членные хелатные циклы стабильны, а хелаты с меньшим или большим числом атомов цикле лабильны, по крайней мере по одному центру (хелатный цикл раскрывается и лиганд остается висеть как простой). Так ведет себя, например, ацетат;

Координационно стабильные лиганды

Повторим все еще раз, только с другой стороны

В координационной сфере металлов сохраняются (являются координационно стабильными) как правило:

  • 5-ти и 6-членные хелаторы;
  • полигапто-лиганды: чтобы вышибить из координационной сферы циклопентадиенилы или бензол (арены) приходится применять всякие специальные приемы – просто так они не выходят, часто выдерживая даже длительное нагревание;
  • лиганды, связанные с металлом с высокой долей π-донорного эффекта (back-donation);
  • мягкие лиганды у поздних переходных металлов;
  • “последний” лиганд в координационной сфере.

Последнее условие выглядит странно, но представьте себе комплекс, у которого много разных лигандов, среди которых нет безусловно стабильных (нет хелаторов и полигапто-лигандов). Тогда в реакциях лиганды будут меняться, условно говоря, в порядке относительной лабильности. Наименее лабильный и останется последним. Такой фокус имеет место, например, когда мы используем фосфиновые комплексы палладия. Фосфины – относительно стабильные лиганды, но, когда их много, а металл богат электронами (d 8 , d 10), они уступают, один за другим, место лигандам-акторам. Но последний фосфиновый лиганд обычно остается в координационной сфере, и это очень хорошо с точки зрения тех реакций, в которых эти комплексы участвуют. Мы еще вернемся к этой важной проблеме. Вот довольно типичный пример, когда от исходной координационной сферы фосфинового комплекса палладия в реакции Хека остается только один, “последний” фосфин. Этот пример очень близко подводит нас к важнейшей концепции в реакциях комплексов переходных металлов – концепции контролирующего лиганда (ligand control). Обсудим позднее.

Переметаллирование

При замещении одних лигандов на другие важно не переборщить с реакционной способностью входящего лиганда. Когда мы имеем дело с реакциями органических молекул, нам важно доставить в координационную сферу ровно по одной молекуле каждого из реагентов. Если вместо одной войдет две молекулы, высока вероятность побочных реакций с участием двух одинаковых лигандов. Возможна также и потеря реакционной способности из-за насыщения координационной сферы и невозможности введения в нее других необходимых для ожидавшегося процесса лигандов. особенно часто эта проблема возникает при введении в координационную сферу сильных анионных нуклеофилов, например, карбанионов. Чтобы избежать этого, используют менее реакционноспособные производные, в которых, вместо катиона щелочного металла, обусловливающего высокую ионность связи, используют менее электроположительные металлы и металлоиды (цинк, олово, бор, кремний, и т.п.), образующие ковалентные связи с нуклеофильной частью. Реакции таких производных с производными переходных металлов дают продукты замещения лигандов, в принципе, точно так же как если бы нуклеофил был в анионной форме, но из-за сниженной нуклеофильности с меньшими осложнениями и без побочных реакций.

Такие реакции замещения лигандов принято называть переметаллированием (transmetallation), чтобы подчеркнуть то очевидное обсоятельство, что нуклеофил как будто бы меняет металлы – более электроположительный на менее электроположительный. В этом названии, таким образом, заложен элемент малоприятной шизофрении – мы вроде бы уже договорились, что будем на все реакции смотреть с точки зрения переходного металла, но вдруг опять сорвались и смотрим на эту реакцию и только на эту реакцию с точки зрения нуклеофила. Придется потерпеть, так сложилась терминология и так принято. На самом деле, это слово восходит к ранней химии металлоорганических соединений и к тому, что действие литий или магнийорганических соединений на галогениды разных металлов и металлоидов – один из основных методов синтеза всякой металлоорганики, в первую очередь непереходной, и реакция, которую мы сейчас рассматриваем в химии координационных соединений переходных металлов – просто обобщение старинного метода металлоорганической химии, из которого она вся и выросла.

Как происходит переметаллирование?

Переметаллирование и похоже на обычное замещение, и не похоже. Похоже – если мы считаем непереходный металлоорганический реагент просто карбанионом с противоионом, то есть связь углерод-непереходный металл ионной. Но это представление похоже на правду только для самых электроположительных металлов – для магния. Но уже для цинка и олова это представление очень далеко от истины.

Поэтому в реакцию вступают две σ-связи и четыре атома на их концах. В результате образуются две новые σ-связи и четыре атома связываются друг с другом в другом порядке. Скорее всего, все это происходит одновременно в четырехчленном переходном состоянии, и сама реакция имеет согласованный характер, как и очень многие другие реакции переходных металлов. Обилие электронов и орбиталей буквально на все вкусы и все виды симметрий делает переходные металлы способными одновременно поддерживать связи в переходных состояниях с несколькими атомами.

В случае переметаллирвоания получаем частный случай очень общего процесса, который называется просто метатезисом σ-связей (σ-bond metathesis). Не путайте только с настоящими метатезисами олефинов и ацетиленов, которые являются полноценными каталитическими реакциями со своими механизмами. В данном случае речь идет о механизме переметаллирования или другого процесса, в котором происходит нечто подобное.

Общая химия: учебник / А. В. Жолнин; под ред. В. А. Попкова, А. В. Жолнина. - 2012. - 400 с.: ил.

Глава 7. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

Глава 7. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

Комплексообразующие элементы являются организаторами жизни.

К. Б. Яцимирский

Комплексные соединения - наиболее обширный и разнообразный класс соединений. В живых организмах присутствуют комплексные соединения биогенных металлов с белками, аминокислотами, порфи-ринами, нуклеиновыми кислотами, углеводами, макроциклическими соединениями. Важнейшие процессы жизнедеятельности протекают с участием комплексных соединений. Некоторые из них (гемоглобин, хлорофилл, гемоцианин, витамин В 12 и др.) играют значительную роль в биохимических процессах. Многие лекарственные препараты содержат комплексы металлов. Например, инсулин (комплекс цинка), витамин В 12 (комплекс кобальта), платинол (комплекс платины) и т.д.

7.1. КООРДИНАЦИОННАЯ ТЕОРИЯ А. ВЕРНЕРА

Строение комплексных соединений

При взаимодействии частиц наблюдается взаимная координация частиц, которую можно определить как процесс комплексообразова-ния. Например, процесс гидратации ионов заканчивается образованием аквакомплексов. Реакции комплексообразования сопровождаются переносом электронных пар и приводят к образованию или разрушению соединений высшего порядка, так называемых комплексных (координационных) соединений. Особенностью комплексных соединений является наличие в них координационной связи, возникшей по донорно-акцепторному механизму:

Комплексными соединениями называются соединения, существующие как в кристаллическом состоянии, так и в растворе, особенностью

которых является наличие центрального атома, окруженного лигандами. Комплексные соединения можно рассматривать как сложные соединения высшего порядка, состоящие из простых молекул, способных к самостоятельному существованию в растворе.

По координационной теории Вернера в комплексном соединении различают внутреннюю и внешнюю сферы. Центральный атом с окружающими его лигандами образуют внутреннюю сферу комплекса. Ее обычно заключают в квадратные скобки. Все остальное в комплексном соединении составляет внешнюю сферу и пишется за квадратными скобками. Вокруг центрального атома размешается определенное число лигандов, которое определяется координационным числом (кч). Число координированных лигандов чаще всего равно 6 или 4. Лиганд занимает около центрального атома координационное место. При координации изменяются свойства как лигандов, так и центрального атома. Часто координированные лиганды невозможно обнаружить с помощью химических реакций, характерных для них в свободном состоянии. Более прочно связанные частицы внутренней сферы называются комплексом (комплексным ионом). Между центральным атомом и лигандами действуют силы притяжения (образуется ковалентная связь по обменному и (или) донорно-акцепторному механизму), между лигандами - силы отталкивания. Если заряд внутренней сферы равен 0, то внешняя координационная сфера отсутствует.

Центральный атом (комплексообразователь) - атом или ион, который занимает центральное положение в комплексном соединении. Роль комплексообразователя чаще всего выполняют частицы, имеющие свободные орбитали и достаточно большой положительный заряд ядра, а следовательно, могут быть акцепторами электронов. Это катионы переходных элементов. Наиболее сильные комплексообразовате-ли - элементы IB и VIIIB групп. Редко в качестве комплексообразо-

вателей выступают нейтральные атомы d-элементов и атомы неметаллов в различной степени окисления - . Число свободных атомных орбиталей, предоставляемых комплексообразователем, определяет его координационное число. Величина координационного числа зависит от многих факторов, но обычно она равна удвоенному заряду иона-комплексообразователя:

Лиганды - ионы или молекулы, которые непосредственно связаны с комплексообразователем и являются донорами электронных пар. Эти электроноизбыточные системы, имеющие свободные и подвижные электронные пары, могут быть донорами электронов, например:

Соединения р-элементов проявляют комплексообразующие свойства и выступают в комплексном соединении в качестве лигандов. Лигандами могут быть атомы и молекулы (белка, аминокислот, нуклеиновых кислот, углеводов). По числу связей, образуемых лигандами с комплексо-образователем, лиганды делятся на моно-, ди- и полидентатные лиганды. Вышеперечисленные лиганды (молекулы и анионы) являются моноден-татными, так как они доноры одной электронной пары. К бидентатным лигандам относятся молекулы или ионы, содержащие две функциональные группы, способные быть донором двух электронных пар:

К полидентатным лигандам можно отнести 6-дентатный лиганд этилендиаминтетрауксусной кислоты:

Число мест, занимаемых каждым лигандом во внутренней сфере комплексного соединения, называется координационной емкостью (дентатностью) лиганда. Она определяется числом электронных пар лиганда, которые участвуют в образовании координационной связи с центральным атомом.

Кроме комплексных соединений, координационная химия охватывает двойные соли, кристаллогидраты, распадающиеся в водном растворе на составные части, которые в твердом состоянии во многих случаях построены аналогично комплексным, но неустойчивы.

Наиболее устойчивые и разнообразные комплексы по составу и выполняемым ими функциям образуют d-элементы. Особенно большое значение имеют комплексные соединения переходных элементов: железа, марганца, титана, кобальта, меди, цинка и молибдена. Биогенные s -элементы (Na, К, Mg, Са) образуют комплексные соединения только с лигандами определенной циклической структуры, выступая также в качестве комплексообразователя. Основная часть р -элементов (N, P, S, О) является активной действующей частью комплексообразующих частиц (лигандов), в том числе и биолигандов. В этом состоит их биологическая значимость.

Следовательно, способность к комплексообразованию - это общее свойство химических элементов периодической системы, эта способность уменьшается в следующем порядке: f > d > p > s.

7.2. ОПРЕДЕЛЕНИЕ ЗАРЯДА ОСНОВНЫХ ЧАСТИЦ КОМПЛЕКСНОГО СОЕДИНЕНИЯ

Заряд внутренней сферы комплексного соединения представляет собой алгебраическую сумму зарядов образующих ее частиц. Например, величина и знак заряда комплекса определяются следующим образом. Заряд иона алюминия равен +3, суммарный заряд шести гидроксид-ионов -6. Следовательно, заряд комплекса равен (+3) + (-6) = -3 и формула комплекса 3- . Заряд комплексного иона численно равен суммарному заряду внешней сферы и противоположен ему по знаку. Например, заряд внешней сферы K 3 равен +3. Следовательно, заряд комплексного иона равен -3. Заряд комплексообразователя равен по величине и противоположен по знаку алгебраической сумме зарядов всех остальных частиц комплексного соединения. Отсюда, в K 3 заряд иона железа равен +3, так как суммарный заряд всех остальных частиц комплексного соединения равен (+3) + (-6) = -3.

7.3. НОМЕНКЛАТУРА КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

Основы номенклатуры разработаны в классических трудах Вернера. В соответствии с ними в комплексном соединении вначале называют катион, а затем анион. Если соединение неэлектролитного типа, то его называют одним словом. Название комплексного иона пишется в одно слово.

Нейтральный лиганд называют так же, как и молекулу, а к лигандам-анионам добавляют в конце «о». Для координированной молекулы воды используют обозначение «аква-». Для обозначения числа одинаковых лигандов во внутренней сфере комплекса в качестве приставки перед названием лигандов используют греческие числительные ди-, три-, тетра-, пента-, гекса- и т.д. Приставку мононе употребляют. Лиганды перечисляют в алфавитном порядке. Название лиганда рассматривают как единое целое. После названия лиганда следует наименование центрального атома с указанием степени окисления, которую обозначают римскими цифрами в круглых скобках. Слово аммин (с двумя «м») пишется применительно к аммиаку. Для всех других аминов употребляется только одно «м».

C1 3 - гексамминкобальта (III) хлорид.

C1 3 - аквапентамминкобальта (III) хлорид.

Cl 2 - пентаметиламминхлорокобальта (III) хлорид.

Диамминдибромоплатина (II).

Если комплексный ион является анионом, то его латинское название имеет окончание «am».

(NH 4) 2 - аммоний тетрахлоропалладат (II).

K - калий пентабромоамминплатинат (IV).

K 2 - калий тетрароданокобальтат (II).

Название сложного лиганда обычно заключают в круглые скобки.

NO 3 - дихлоро-ди-(этилендиамин) кобальта (III) нитрат.

Br - бромо-трис-(трифенилфосфин) платины (II) бромид.

В тех случаях, когда лиганд связывает два центральных иона, перед его названием употребляется греческая буква μ.

Такие лиганды называют мостиковыми и перечисляют последними.

7.4. ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

В образовании комплексных соединений важную роль играют донорно-акцепторные взаимодействия лиганда и центрального атома. Донором электронной пары, как правило, является лиганд. Акцептором - центральный атом, который имеет свободные орбитали. Связь эта прочна и не разрывается при растворении комплекса (неио-ногенна), и ее называют координационной.

Наряду с о-связями образуются π-связи по донорно-акцепторному механизму. При этом донором служит ион металла, отдающий свои спаренные d-электроны лиганду, имеющему энергетически выгодные вакантные орбитали. Такие связи называют дативными. Они образуются:

а)за счет перекрывания вакантных р-орбиталей металла с d-ор-биталью металла, на которой находятся электроны, не вступившие в σ-связь;

б)при перекрывании вакантных d-орбиталей лиганда с заполненными d-орбиталями металла.

Мерой ее прочности является степень перекрывания орбиталей лиган-да и центрального атома. Направленность связей центрального атома определяет геометрию комплекса. Для объяснения направленности связей используются представления о гибридизации атомных орбиталей центрального атома. Гибридные орбитали центрального атома являются результатом смешения неравноценных атомных орбиталей, в результате форма и энергия орбиталей взаимно изменяются, и образуются орби-тали новой одинаковой формы и энергии. Число гибридных орбиталей всегда равно числу исходных. Гибридные облака располагаются в атоме на максимальном удалении друг от друга (табл. 7.1).

Таблица 7.1. Типы гибридизации атомных орбиталей комплексообразовате-ля и геометрия некоторых комплексных соединений

Пространственная структура комплекса определяется типом гибридизации валентных орбиталей и числом неподеленных электронных пар, содержащихся в его валентном энергетическом уровне.

Эффективность донорно-акцепторного взаимодействия лиганда и комплексообразователя, а следовательно, и прочность связи между ними (устойчивость комплекса) определяются их поляризуемостью, т.е. способностью трансформировать свои электронные оболочки под внешним воздействием. По этому признаку реагенты подразделяются на «жесткие», или малополяризуемые, и «мягкие» - легкополя-ризуемые. Полярность атома, молекулы или иона зависит от их размера и числа электронных слоев. Чем меньше радиус и электронов у частицы, тем она меньше поляризуется. Чем меньше радиус и меньше электронов у частицы, тем она хуже поляризуется.

Жесткие кислоты образуют с электроотрицательными атомами О, N, F лигандов (жестких оснований) прочные (жесткие) комплексы, а мягкие кислоты образуют с донорными атомами Р, S и I лигандов, имеющих низкую электроотрицательность и высокую поляризуемость, прочные (мягкие) комплексы. Мы наблюдаем здесь проявление общего принципа «подобное с подобным».

Ионы натрия, калия вследствие своей жесткости практически не образуют устойчивых комплексов с биосубстратами и в физиологических средах находятся в виде аквакомплексов. Ионы Са 2 + и Mg 2 + образуют достаточно устойчивые комплексы с белками и поэтому в физиологических средах находятся как в ионном, так и в связанном состоянии.

Ионы d-элементов образуют с биосубстратами (белками) прочные комплексы. А мягкие кислоты Cd, Pb, Hg сильно токсичны. Они образуют прочные комплексы с белками, содержащими R-SH сульф-гидрильные группы:

Цианид-ион токсичен. Мягкий лиганд активно взаимодействует с d-металлами в комплексах с биосубстратами, активируя последние.

7.5. ДИССОЦИАЦИЯ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ. УСТОЙЧИВОСТЬ КОМПЛЕКСОВ. ЛАБИЛЬНЫЕ И ИНЕРТНЫЕ КОМПЛЕКСЫ

При растворении в воде комплексных соединений обычно они распадаются на ионы внешней и внутренней сфер, подобно сильным электролитам, так как эти ионы связаны ионогенно, в основном электростатическими силами. Это оценивается как первичная диссоциация комплексных соединений.

Вторичная диссоциация комплексного соединения - это распад внутренней сферы на составляющие ее компоненты. Этот процесс протекает по типу слабых электролитов, так как частицы внутренней сферы связаны неионогенно (ковалентной связью). Диссоциация носит ступенчатый характер:

Для качественной характеристики устойчивости внутренней сферы комплексного соединения используют константу равновесия, описывающую полную ее диссоциацию, называемую константой нестойкости комплекса (Кн). Для комплексного аниона - выражение константы нестойкости имеет вид:

Чем меньше значение Кн, тем более устойчивой является внутренняя сфера комплексного соединения, т.е. тем меньше она диссоциирует в водном растворе. В последнее время вместо Кн используют значение константы устойчивости (Ку) - величины, обратной Кн. Чем больше значение Ку, тем более стабильный комплекс.

Константы устойчивости позволяют прогнозировать направление лигандообменных процессов.

В водном растворе ион металла существует в виде аквакомплексов: 2 + - гексаакважелезо (II), 2 + - тетрааквамедь (II). При написании формул гидратированных ионов координированные молекулы воды гидратной оболочки не указываем, но подразумеваем. Образование комплекса между ионом металла и каким-либо лигандом рассматриваем как реакцию замещения молекулы воды во внутренней координационной сфере этим лигандом.

Лигандообменные реакции протекают по механизму реакций S N -Типа. Например:

Значения констант устойчивости, приведенные в таблице 7.2, свидетельствуют о том, что за счет процесса комплексообразования происходит прочное связывание ионов в водных растворах, что указывает на эффективность использования данного типа реакций для связывания ионов, особенно полидентатными лигандами.

Таблица 7.2. Устойчивость комплексов циркония

В отличие от реакций ионного обмена образование комплексных соединений часто не является квазимгновенным процессом. Например, при взаимодействии железа (III) с нитрилтриметиленфосфоновой кислотой равновесие устанавливается через 4 суток. Для кинетической характеристики комплексов используются понятия - лабильный (быстро вступающий в реакцию) и инертный (медленно вступающий в реакцию). Лабильными комплексами, по предложению Г. Таубе, считаются такие, которые полностью обмениваются лигандами в течение 1 мин при комнатной температуре и концентрации раствора 0,1 М. Необходимо четко различать термодинамические понятия [прочный (устойчивый)/непрочный (неустойчивый)] и кинетические [инертный и лабильный] комплексы.

У лабильных комплексов замещение лигандов происходит быстро и быстро устанавливается равновесие. У инертных комплексов замещение лигандов протекает медленно.

Так, инертный комплекс 2 + в кислой среде термодинамически неустойчив: константа нестойкости равна 10 -6 , а лабильный комплекс 2- очень устойчив: константа устойчивости равна 10 -30 . Лабильность комплексов Таубе связывает с электронной структурой центрального атома. Инертность комплексов свойственна, главным образом, ионам с незаконченной d-оболочкой. К инертным относятся комплексы Со, Сr. Цианидные комплексы многих катионов с внешним уровнем s 2 p 6 лабильны.

7.6. ХИМИЧЕСКИЕ СВОЙСТВА КОМПЛЕКСОВ

Процессы комплексообразования сказываются практически на свойствах всех частиц, образующих комплекс. Чем выше прочность связей лиганда и комплексообразователя, тем в меньшей степени в растворе проявляются свойства центрального атома и лигандов и тем заметнее сказываются особенности комплекса.

Комплексные соединения проявляют химическую и биологическую активность в результате координационной ненасыщенности центрального атома (имеются свободные орбитали) и наличия свободных электронных пар лигандов. В этом случае комплекс обладает электро-фильными и нуклеофильными свойствами, отличными от свойств центрального атома и лигандов.

Необходимо учитывать влияние на химическую и биологическую активность строения гидратной оболочки комплекса. Процесс образова-

ния комплексов оказывает влияние на кислотно-основные свойства комплексного соединения. Образование комплексных кислот сопровождается увеличением силы кислоты или основания соответственно. Так, при образовании комплексных кислот из простых энергия связи с ионами Н + падает и сила кислоты соответственно растет. Если во внешней сфере находится ион ОН - , то связь между комплексным катионом и гидроксид-ионом внешней сферы уменьшается, и основные свойства комплекса увеличиваются. Например, гидроксид меди Cu(ОН) 2 - слабое, труднорастворимое основание. При действии на него аммиака образуется аммиакат меди (OH) 2 . Плотность заряда 2 + по сравнению с Cu 2 + уменьшается, связь с ионами ОН - ослабляется и (OH) 2 ведет себя как сильное основание. Кислотно-основные свойства лигандов, связанных с комплексообразователем, обычно проявляются более сильно, чем кислотно-основные свойства их в свободном состоянии. Например, гемоглобин (Нb) или оксигемоглобин (НbО 2) проявляют кислотные свойства за счет свободных карбоксильных групп белка-глобина, являющегося лигандом ННb ↔ Н + + Hb - . В то же время анион гемоглобина за счет аминогрупп белка глобина проявляет основные свойства и поэтому связывает кислотный оксид СО 2 с образованием аниона карбаминогемоглобина (НbСО 2 -): СО 2 + Hb - ↔ НbСО 2 - .

Комплексы проявляют окислительно-восстановительные свойства за счет окислительно-восстановительных превращений комплексо-образователя, образующего устойчивые степени окисления. Процесс комплексообразования сильно влияет на величины восстановительных потенциалов d-элементов. Если восстановленная форма катионов образует с данным лигандом более устойчивый комплекс, чем его окисленная форма, то величина потенциала возрастает. Снижение величины потенциала происходит, когда более устойчивый комплекс образует окисленная форма. Например, под действием окислителей: нитритов, нитратов, NO 2 , H 2 O 2 гемоглобин в результате окисления центрального атома превращается в метгемоглобин.

Шестая орбиталь используется в образовании оксигемоглобина. Эта же орбиталь участвует в образовании связи с монооксидом углерода. В результате образуется макроциклический комплекс с железом - карбоксигемоглобин. Этот комплекс в 200 раз более устойчив, чем комплекс железа с кислородом в геме.

Рис. 7.1. Химические превращения гемоглобина в организме человека. Схема из кн.: Слесарев В.И. Основы химии живого, 2000

Образование комплексных ионов влияет на каталитическую активность ионов комплексообразователей. В ряде случаев активность увеличивается. Это обусловлено образованием в растворе крупных структурных систем, способных участвовать в создании промежуточных продуктов и снижении энергии активации реакции. Например, если к Н 2 О 2 прибавить Cu 2+ или NH 3 , процесс разложения не ускоряется. В присутствии же комплекса 2 +, который образуется в щелочной среде, разложение перекиси водорода ускоряется в 40 млн раз.

Итак, на гемоглобине можно рассмотреть свойства комплексных соединений: кислотно-основные, комплексообразования и окислительно-восстановительные.

7.7. КЛАССИФИКАЦИЯ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

Существует несколько систем классификации комплексных соединений, которые основываются на различных принципах.

1.По принадлежности комплексного соединения к определенному классу соединений:

Комплексные кислоты H 2 ;

Комплексные основания OH;

Комплексные соли K 4 .

2.По природе лиганда: аквакомплексы, аммиакаты, ацидоком-плексы (в качестве лигандов выступают анионы различных кислот, K 4 ; гидроксокомплексы (в качестве лигандов - гидроксиль-ные группы, K 3 ); комплексы с макроциклическими лиганда-ми, внутри которых размещается центральный атом.

3.По знаку заряда комплекса: катионные - комплексный катион в комплексном соединении Cl 3 ; анионные - комплексный анион в комплексном соединении K; нейтральные - заряд комплекса равен 0. Комплексное соединение внешней сферы не имеет, например . Это формула противоопухолевого препарата.

4.По внутренней структуре комплекса:

а) в зависимости от числа атомов комплексообразователя: моноядерные - в состав комплексной частицы входит один атом комплексообразователя, например Cl 3 ; многоядерные - в составе комплексной частицы несколько атомов ком-плексообразователя - железопротеиновый комплекс:

б) в зависимости от числа видов лигандов различают комплексы: однородные (однолигандные), содержащие один вид лиганда, например 2 +, и разнородные (разнолигандные) - два вида лигандов или более, например Pt(NH 3) 2 Cl 2 . В состав комплекса входят лиган-ды NH 3 и Cl - . Для комплексных соединений, содержащих во внутренней сфере различные лиганды, характерна геометрическая изомерия, когда при одинаковом составе внутренней сферы лиганды в ней располагаются по-разному относительно друг друга.

Геометрические изомеры комплексных соединений отличаются не только по физическим и химическим свойствам, но и биологической активностью. Цис-изомер Pt(NH 3) 2 Cl 2 имеет ярко выраженную противоопухолевую активность, а транс-изомер - нет;

в)в зависимости от дентатности лигандов, образующих моноядерные комплексы, можно выделить группы:

Одноядерные комплексы с монодентатными лигандами, например 3+ ;

Одноядерные комплексы с полидентатными лигандами. Комплексные соединения с полидентатными лигандами называют хелатными соединениями;

г)циклические и ациклические формы комплексных соединений.

7.8. ХЕЛАТНЫЕ КОМПЛЕКСЫ. КОМПЛЕКСОНЫ. КОМПЛЕКСОНАТЫ

Циклические структуры, которые образуются в результате присоединения иона металла к двум донорным атомам или более, принадлежащим одной молекуле хелатообразующего агента, называются хелатными соединениями. Например, глицинат меди:

В них комплексообразователь как бы ведет внутрь лиганда, охвачен связями, как клешнями, поэтому они при прочих равных условиях обладают более высокой устойчивостью, чем соединения, не содержащие циклов. Наиболее устойчивы циклы, состоящие из пяти или шести звеньев. Это правило впервые сформулировано Л.А. Чугаевым. Разность

устойчивости хелатного комплекса и устойчивости его нециклического аналога называют хелатньм эффектом.

В качестве хелатообразующего агента выступают полидентатные лиганды, которые содержат 2 типа группировок:

1)группы, способные к образованию ковалентных полярных связей за счет реакций обмена (доноры протонов, акцепторы электронных пар) -СН 2 СООН, -СН 2 РО(ОН) 2 , -CH 2 SO 2 OH, - кислотные группы (центры);

2)группы-доноры электронных пар: ≡N, >NH, >C=O, -S-, -OH, - основные группы (центры).

Если такие лиганды насыщают внутреннюю координационную сферу комплекса и полностью нейтрализуют заряд иона металла, то соединения называют внутрикомплексньми. Например, глицинат меди. В данном комплексе внешняя сфера отсутствует.

Большая группа органических веществ, содержащих в молекуле основные и кислотные центры, называется комплексонами. Это многоосновные кислоты. Хелатные соединения, образуемые комплексонами при взаимодействии с ионами металлов, называют комплексонатами, например комплексонат магния с этилендиаминтетрауксусной кислотой:

В водном растворе комплекс существует в анионной форме.

Комплексоны и комплексонаты являются простой моделью более сложных соединений живых организмов: аминокислот, полипептидов, белков, нуклеиновых кислот, ферментов, витаминов и многих других эндогенных соединений.

В настоящее время выпускается огромный ассортимент синтетических комплексонов с различными функциональными группами. Формулы основных комплексонов представлены ниже:


Комплексоны при определенных условиях могут предоставлять неподеленные электронные пары (несколько) для образования координационной связи с ионом металла (s-, p- или d-элемента). В результате образуются устойчивые соединения хелатного типа с 4-, 5-, 6- или 8-членными циклами. Реакция протекает в широком интервале pH. В зависимости от pH, природы комплексообразователя, соотношения его с лигандом образуются комплексонаты различной прочности и растворимости. Химизм образования комплексонатов можно представить уравнениями на примере натриевой соли ЭДТА (Na 2 H 2 Y), который в водном растворе диссоциирует: Na 2 H 2 Y→ 2Na + + H 2 Y 2- , и ион H 2 Y 2- взаимодействует с ионами металлов независимо от степени окисления катиона металла, с одной молекулой комплексона взаимодействует чаще всего один ион металла (1:1). Реакция протекает количественно (Кр >10 9).

Комплексоны и комплексонаты проявляют в широком интервале pH амфотерные свойства, способность участвовать в реакциях окисления- восстановления, комплексообразования, образуют соединения с разнообразными свойствами в зависимости от степени окисления металла, его координационной насыщенности, обладают электрофильными и нуклеофильными свойствами. Все это определяет способность связывать огромное число частиц, что позволяет малым количеством реагента решать большие и разнообразные задачи.

Другое неоспоримое достоинство комплексонов и комплексонатов - это малая токсичность и способность превращать токсичные частицы

в малотоксичные или даже в биологически активные. Продукты разрушения комплексонатов не накапливаются в организме и безвредны. Третья особенность комплексонатов - это возможность их использования как источника микроэлементов.

Повышенная усвояемость обусловлена тем, что микроэлемент вводится в биологически активной форме и обладает высокой мембрано-проницаемостью.

7.9. ФОСФОРСОДЕРЖАЩИЕ КОМПЛЕКСОНАТЫ МЕТАЛЛОВ - ЭФФЕКТИВНАЯ ФОРМА ПРЕВРАЩЕНИЯ МИКРО-И МАКРОЭЛЕМЕНТОВ В БИОЛОГИЧЕСКИ АКТИВНОЕ СОСТОЯНИЕ И МОДЕЛЬ ИССЛЕДОВАНИЯ БИОЛОГИЧЕСКОГО ДЕЙСТВИЯ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

Понятие биологическая активность охватывает широкий круг явлений. С точки зрения химического воздействия под биологически активными веществами (БАВ) принято понимать вещества, которые могут действовать на биологические системы, регулируя их жизнедеятельность.

Способность к такому воздействию трактуют как способность к проявлению биологической активности. Регуляция может проявляться в эффектах стимулирования, угнетения, развития тех или иных эффектов. Крайним проявлением биологической активности является биоцидное действие, когда в результате воздействия вещества-биоцида на организм последний погибает. При меньших концентрациях в большинстве случаев биоциды оказывают на живые организмы не летальное, а стимулирующее действие.

В настоящее время известно большое число таких веществ. Тем не менее во многих случаях применение известных БАВ используют недостаточно, нередко с эффективностью, далекой от максимальной, и применение нередко приводит к побочным эффектам, которые могут быть устранены путем введения в БАВ модификаторов.

Фосфорсодержащие комплексонаты образуют соединения с разнообразными свойствами в зависимости от природы, степени окисления металла, координационной насыщенности, состава и строения гидрат-ной оболочки. Все это определяет полифункциональность комплексо-натов, их уникальную способность субстехиометрического действия,

эффект общего иона и обеспечивает широкое применение в медицине, биологии, экологии и в различных отраслях народного хозяйства.

При координации ионом металла комплексона происходит перераспределение электронной плотности. Вследствие участия неподе-ленной электронной пары при донорно-акцепторном взаимодействии происходит смещение электронной плотности лиганда (комплексо-на) к центральному атому. Понижение относительно отрицательного заряда на лиганде способствует уменьшению кулоновского отталкивания реагентов. Поэтому координированный лиганд становится более доступным для атаки нуклеофильным реагентом, имеющим на реакционном центре избыток электронной плотности. Смещение электронной плотности от комплексона к иону металла приводит к относительному увеличению положительного заряда атома углерода, а следовательно, и к облегчению его атаки нуклеофильным реагентом, гидроксильным ионом. Гидроксилированный комплекс среди ферментов, которые катализируют процессы метаболизма в биологических системах, занимает одно из центральных мест в механизме ферментативного действия и детоксикации организма. В результате многоточечного взаимодействия фермента с субстратом происходит ориентация, обеспечивающая сближение активных групп в активном центре и перевод реакции во внутримолекулярный режим, до начала протекания реакции и образования переходного состояния, что обеспечивает ферментативную функцию ФКМ. В молекулах фермента могут происходить конформа-ционные изменения. Координация создает дополнительные условия для окислительно-восстановительного взаимодействия между центральным ионом и лигандом, так как устанавливается непосредственная связь между окислителем и восстановителем, обеспечивающая переход электронов. Для комплексов переходных металлов ФКМ могут быть характерны переходы электронов типа L-M, M-L, M-L-M, в которых участвуют орбитали как металла (M), так и лигандов (L), которые соответственно связаны в комплексе донорно-акцепторными связями. Комплексоны могут служить мостиком по которому осциллируют электроны многоядерных комплексов между центральными атомами одного или разных элементов в различной степени окисления (комплексы переноса электронов и протонов). Комплексоны определяют восстановительные свойства комплексонатов металлов, что позволяет им проявлять высокие антиоксидантные, адаптогенные свойства, гомеостатические функции.

Итак, комплексоны превращают микроэлементы в биологически активную, доступную для организма форму. Они образуют устойчивые,

более координационно насыщенные частицы, неспособные разрушать биокомплексы, а следовательно, малотоксичные формы. Комплексонаты благоприятно действуют при нарушении микроэлементного гомеоста-за организма. Ионы переходных элементов в комплексонатной форме выступают в организме в качестве фактора, определяющего высокую чувствительность клеток, к микроэлементам путем их участия в создании высокого градиента концентрации, мембранного потенциала. Комплексонаты переходных металлов ФКМ обладают биорегуляторны-ми свойствами.

Наличие в составе ФКМ кислотных и основных центров обеспечивает амфотерные свойства и их участие в поддержании кислотно-основного равновесия (состояние изогидрии).

С увеличением числа фосфоновых групп в составе комплексона изменяются состав и условия образования растворимых и малорастворимых комплексов. Увеличение числа фосфоновых групп благоприятствует образованию малорастворимых комплексов в более широком интервале pH, сдвигает область их существования в кислую область. Разложение комплексов происходит при pH более 9.

Изучение процессов комплексообразования с комплексонами позволило разработать методики синтеза биорегуляторов:

Стимуляторы роста пролонгированного действия в коллоидно-химической форме - это полиядерные гомо- и гетерокомплекс-ные соединения титана и железа;

Стимуляторы роста в водорастворимой форме. Это разнолиганд-ные комплексонаты титана на основе комплексонов и неорганического лиганда;

Ингибиторы роста - фосфорсодержащие комплексонаты s-элементов.

Биологическое действие синтезированных препаратов на рост и развитие изучено в хроническом эксперименте на растениях, животных и человеке.

Биорегуляция - это новое научное направление, позволяющее регулировать направление и интенсивность биохимических процессов, что можно широко использовать в медицине, животноводстве и растениеводстве. Оно связано с разработкой способов восстановления физиологической функции организма с целью профилактики и лечения заболеваний и возрастных патологий. Комплексоны и комплексные соединения на их основе можно отнести к перспективным биологически активным соединениям. Изучение их биологического действия в хроническом эксперименте показало, что химия дала в руки медиков,

животноводов, агрономов и биологов новое перспективное средство, позволяющее активно воздействовать на живую клетку, регулировать условия питания, рост и развитие живых организмов.

Исследование токсичности применяемых комплексонов и комплексонатов показало полное отсутствие влияния препаратов на кроветворные органы, артериальное давление, возбудимость, частоту дыхания: не отмечено изменение функции печени, не выявлено токсикологическое влияние на морфологию тканей и органов. Калиевая соль ОЭДФ не обладает токсичностью в дозе, в 5-10 раз превышающей лечебную (10-20 мг/кг) при исследовании в течение 181 сут. Следовательно, комплексоны относятся к малотоксичным соединениям. Они используются в качестве лекарственных препаратов для борьбы с вирусными заболеваниями, отравлениями тяжелыми металлами и радиоактивными элементами, нарушением кальциевого обмена, при эндемических заболеваниях и нарушении баланса микроэлемента в организме. Фосфорсодержащие комплек-соны и комплексонаты не подвергаются фотолизу.

Прогрессирующее загрязнение окружающей среды тяжелыми металлами - продуктами хозяйственной деятельности человека является постоянно действующим экологическим фактором. Они могут накапливаться в организме. Избыток и недостаток их вызывают интоксикацию организма.

Комплексонаты металлов, сохраняют в организме хелатообразующий эффект по лиганду (комплексону) и являются незаменимыми для поддержания металлолигандного гомеостаза. Инкорпорированные тяжелые металлы до определенной степени нейтрализуются в организме, а низкая ресорбционная способность препятствует передаче металлов вдоль трофических цепей, в результате это приводит к определенной «биоминиза-ции» их токсического действия, что особенно актуально для Уральского региона. Например, свободный ион свинца относится к тиоловым ядам, а прочный комплексонат свинца с этилендиаминтетрауксусной кислотой малотоксичен. Поэтому детоксикация растений и животных заключается в применении комплексонатов металлов. Она основана на двух термодинамических принципах: их способности образовывать прочные связи с токсичными частицами, превращая их в малорастворимые либо устойчивые в водном растворе соединения; их неспособности разрушать эндогенные биокомплексы. В связи с этим мы считаем важным направлением борьбы с экоотравлениями и получением экологически чистой продукции - это комплексонотерапию растений и животных.

Проведено изучение влияния обработки растений комплексоната-ми различных металлов при интенсивной технологии выращивания

картофеля на микроэлементный состав клубней картофеля. Образцы клубней содержали 105-116 мг/кг железа, 16-20 мг/кг марганца, 13-18 мг/кг меди и 11-15 мг/кг цинка. Соотношение и содержание микроэлементов типичны для растительных тканей. Клубни, выращенные с применением и без применения комплексонатов металлов, имеют практически одинаковый элементный состав. Применение хела-тов не создает условия для накопления тяжелых металлов в клубнях. Комплексонаты в меньшей степени, чем ионы металлов, сорбируются почвой, устойчивы против ее микробиологического воздействия, что позволяет им длительное время удерживаться в почвенном растворе. Эффект последействия 3-4 года. Они хорошо сочетаются с различными ядохимикатами. Металл в комплексе имеет более низкую токсичность. Фосфорсодержащие комплексонаты металлов не раздражают слизистую оболочку глаз и не повреждают кожу. Сенсибилизирующие свойства не выявлены, кумулятивные свойства комплексонатов титана не выражены, а у некоторых выражены очень слабо. Коэффициент кумуляции равен 0,9-3,0, что указывает на низкую потенциальную опасность хронического отравления препаратами.

В основе фосфорсодержащих комплексов лежит фосфоруглеродная связь (С-Р), которая обнаружена и в биологических системах. Она входит в состав фосфонолипидов, фосфоногликанов и фосфопротеинов клеточных мембран. Липиды, содержащие аминофосфоновые соединения, устойчивы к энзиматическому гидролизу, обеспечивают стабильность, а следовательно, и нормальное функционирование наружных клеточных мембран. Синтетические аналоги пирофосфатов - дифос-фонаты (Р-С-Р) или (Р-С-С-Р) в больших дозах нарушают обмен кальция, а в малых нормализуют его. Дифосфонаты эффективны при гиперлипемии и перспективны с позиций фармакологии.

Дифосфонаты, содержащие связи Р-С-Р, являются структурными элементами биосистем. Они биологически эффективны и являются аналогами пирофосфатов. Показано, что дифосфонаты являются эффективными средствами лечения различных заболеваний. Дифосфонаты являются активными ингибиторами минерализации и резорбции костей. Комплексоны превращают микроэлементы в биологически активную, доступную для организма форму, образуют устойчивые более координационно-насыщенные частицы, неспособные разрушать биокомплексы, а следовательно, малотоксичные формы. Они определяют высокую чувствительность клеток к микроэлементам, участвуя в формировании высокого градиента концентрации. Способны участвовать в образовании многоядерных соединений титана гетероядер-

ного типа - комплексов переноса электронов и протонов, участвовать в биорегуляции обменных процессов, резистентности организма, способности образовывать связи с токсическими частицами, превращая их в малорастворимые или растворимые, устойчивые, неразрушающие эндогенные комплексы. Поэтому их применение для детоксикации, элиминации из организма, получения экологически чистых продуктов (комплексонотерапии), а также в промышленности для регенерации и утилизации промышленных отходов неорганических кислот и солей переходных металлов весьма перспективно.

7.10. ЛИГАНДООБМЕННЫЕ И МЕТАЛЛООБМЕННЫЕ

РАВНОВЕСИЯ. ХЕЛАТОТЕРАПИЯ

Если в системе несколько лигандов с одним ионом металла или несколько ионов металла с одним лигандом, способных к образованию комплексных соединений, то наблюдаются конкурирующие процессы: в первом случае лигандообменное равновесие - конкуренция между лигандами за ион металла, во втором случае металлообменное равновесие - конкуренция между ионами металла за лиганд. Преобладающим будет процесс образования наиболее прочного комплекса. Например, в растворе имеются ионы: магния, цинка, железа (III), меди, хрома (II), железа (II) и марганца (II). При введении в этот раствор небольшого количества этилендиаминтетрауксусной кислоты (ЭДТА) происходят конкуренция между ионами металлов и связывание в комплекс железа (III), так как он образует с ЭДТА наиболее прочный комплекс.

В организме постоянно происходят взаимодействие биометаллов (Мб) и биолигандов (Lб), образование и разрушение жизненно необходимых биокомплексов (МбLб):

В организме человека, животных и растений имеются различные механизмы защиты и поддержки данного равновесия от различных ксенобиотиков (чужеродных веществ), и в том числе от ионов тяжелых металлов. Ионы тяжелых металлов, не связанные в комплекс, и их гидроксокомплексы являются токсичными частицами (Мт). В этих случаях, наряду с естественным металлолигандным равновесием, может возникнуть новое равновесие, с образованием более прочных чужеродных комплексов, содержащих металлы токсиканта (МтLб) или лиганды-токсиканты (МбLт), которые не выполняют

необходимые биологические функции. При попадании в организм экзогенных токсичных частиц возникают совмещенные равновесия и как следствие - конкуренция процессов. Преобладающим будет тот процесс, который приводит к образованию наиболее прочного комплексного соединения:

Нарушения металлолигандного гомеостаза вызывают нарушения процесса обмена веществ, ингибируют активность ферментов, разрушают важные метаболиты, такие, как АТФ, клеточные мембраны, нарушают градиент концентрации ионов в клетках. Поэтому создаются искусственные системы защиты. Должное место в этом методе занимает хелатотерапия (комплексонотерапия).

Хелатотерапия - это выведение токсичных частиц из организма, основанное на хелатировании их комплексонатами s-элементов. Препараты, применяемые для выведения инкорпорированных в организме токсичных частиц, называют детоксикантами (Lg). Хелатирование токсичных частиц комплексонатами металлов (Lg) преобразует токсичные ионы металлов (Мт) в нетоксичные (МтLg) связанные формы, подходящие для изоляции и проникновения через мембраны, транспорта и выведения из организма. Они сохраняют в организме хелатообразующий эффект как по лиганду (комплексону), так и по иону металла. Это обеспечивает металлолигандный гомеостаз организма. Поэтому применение комплексонатов в медицине, животноводстве, растениеводстве обеспечивает детоксикацию организма.

Основные термодинамические принципы хелатотерапии можно сформулировать в двух положениях.

I. Детоксикант (Lg) должен эффективно связывать ионы-токсиканты (Мт, Lт), вновь образующиеся соединения (МтLg) должны быть прочнее, чем те, которые существовали в организме:

II. Детоксикант не должен разрушать жизненно необходимые комплексные соединения (МбLб); соединения, которые могут образовываться при взаимодействии детоксиканта и ионов биометаллов (MбLg), должны быть менее прочными, чем существующие в организме:

7.11. ПРИМЕНЕНИЕ КОМПЛЕКСОНОВ И КОМПЛЕКСОНАТОВ В МЕДИЦИНЕ

Молекулы комплексонов практически не подвергаются расщеплению или какому-либо изменению в биологической среде, что является их важной фармакологической особенностью. Комплексоны нерастворимы в липидах и хорошо растворимы в воде, поэтому они не проникают или плохо проникают через клеточные мембраны, а следовательно: 1) не выводятся кишечником; 2) всасывание ком-плексообразователей происходит только при их инъекции (лишь пеницилламин принимают внутрь); 3) в организме комплексоны циркулируют по преимуществу во внеклеточном пространстве; 4) выведение из организма осуществляется главным образом через почки. Этот процесс происходит быстро.

Вещества, устраняющие последствия воздействия ядов на биологические структуры и инактивирующие яды посредством химических реакций, называют антидотами.

Одним из первых антидотов, который применили в хелатотерапии, является британский антилюизит (БАЛ). В настоящее время применяют унитиол:

Этот препарат эффективно выводит из организма мышьяк, ртуть, хром и висмут. Наиболее широко используют при отравлении цинком, кадмием, свинцом и ртутью комплексоны и комплексонаты. Применение их основано на образовании более прочных комплексов с ионами металлов, чем комплексы этих же ионов с серосодержащими группами белков, аминокислот и углеводов. Для выведения свинца используют препараты на основе ЭДТА. Введение в организм в больших дозах препаратов опасно, так как они связывают ионы кальция, что приводит к нарушению многих функций. Поэтому применяют тетацин (СаNa 2 ЭДТА), который используют для выведения свинца, кадмия, ртути, иттрия, церия и других редкоземельных металлов и кобальта.

Со времени первого лечебного использования тетацина в 1952 году этот препарат нашел широкое применение в клинике профессиональных заболеваний и продолжает оставаться незаменимым антидотом. Механизм действия тетацина весьма интересен. Ионы-токсиканты вытесняют координированный ион кальция из тетацина в связи с образованием более прочных связей с кислородом и ЭДТА. Ион кальция, в свою очередь, вытесняет два оставшихся иона натрия:

Тетацин вводят в организм в виде 5-10% раствора, основой которого является физиологический раствор. Так, уже через 1,5 ч после внутрибрюшинной инъекции в организме остается 15% введенной дозы тетацина, через 6 ч - 3%, а через 2 сут - только 0,5%. Эффективно и быстро действует препарат при применении ингаляционного метода введения тетацина. Он быстро всасывается и долго циркулирует в крови. Кроме того, тетацин используют при защите от газовой гангрены. Он ингибирует действие ионов цинка и кобальта, которые являются активаторами фермента лецитиназы, являющегося токсином газовой гангрены.

Связывание токсикантов тетацином в малотоксичный и более прочный хелатный комплекс, который не разрушается и легко выводится из организма через почки, обеспечивает детоксикацию и сбалансированное минеральное питание. Близким по структуре и составу к пре-

паратам ЭДТА является натриево-кальциевая соль диэтилентриамин-пентауксусной кислоты (СаNa 3 ДТПА) - пентацин и натриевая соль диэтилентриаминпентафосфоновой кислоты (Na 6 ДТПФ) - тримефа-цин. Пентацин применяют преимущественно при отравлениях соединениями железа, кадмия и свинца, а также для удаления радионуклидов (технеция, плутония, урана).

Натриевая соль этилендиаминдиизопропилфосфоновой кислоты (СаNa 2 ЭДТФ) фосфицин успешно используется для выведения из организма ртути, свинца, берилия, марганца, актиноидов и других металлов. Комплексонаты весьма эффективны для удаления некоторых токсичных анионов. Например, этилендиаминтетраацетат кобальта (II), образующий смешанно-лигандный комплекс с CN - , может быть рекомендован в качестве антидота при отравлениях цианидами. Аналогичный принцип лежит в основе способов выведения токсичных органических веществ, в том числе пестицидов, содержащих функциональные группировки с донорными атомами, способными к взаимодействию с металлом комплексоната.

Эффективным препаратом является сукцимер (димеркаптоянтарная кислота, димеркаптосукциновая кислота, хемет). Он прочно связывает практически все токсиканты (Hg, As, Pb, Cd), но выводит из организма ионы биогенных элементов (Cu, Fe, Zn, Co), поэтому почти не применяется.

Фосфоросодержащие комплексонаты являются мощными ингибиторами кристаллообразования фосфатов и оксалатов кальция. В качестве антикальцифицирующего препарата при лечении мочекаменной болезни предложен ксидифон - калиево-натриевая соль ОЭДФ. Дифосфонаты, кроме того, в минимальных дозах увеличивают включение кальция в костную ткань, предупреждают патологический выход его из костей. ОЭДФ и другие дифосфонаты предотвращают различные виды остеопороза, включая почечную остеодистрофию, периоденталь-

ную деструкцию, также деструкцию пересаженной кости у животных. Описан также антиатеросклеротический эффект ОЭДФ.

В США предложен ряд дифосфонатов, в частности ОЭДФ, в качестве фармацевтических препаратов для лечения человека и животных, страдающих метастазированным раком костей. Регулируя проницаемость мембран, дифосфонаты способствуют транспортировке противоопухолевых лекарств в клетку, а значит, и эффективному лечению различных онкологических заболеваний.

Одной из актуальных проблем современной медицины является задача экспрессной диагностики различных заболеваний. В этом аспекте несомненный интерес представляет новый класс препаратов, содержащих катионы, способные выполнять функции зонда - радиоактивных магниторелаксационных и флюоресцентных меток. В качестве основных компонентов радиофармацевтических препаратов используются радиоизотопы некоторых металлов. Хелатирование катионов этих изотопов комплексонами позволяет повысить их токсикологическую приемлемость для организма, облегчить их транспортировку и обеспечить в известных пределах избирательность концентрации в тех или иных органах.

Приведенные примеры отнюдь не исчерпывают всего многообразия форм применения комплексонатов в медицине. Так, дикалиевая соль этилендиаминтетраацетата магния используется для регулирования содержания жидкости в тканях при патологии. ЭДТА применяется в составе антикоагулянтных суспензий, используемых при разделении плазмы крови, в качестве стабилизатора аденозинтрифосфата при определении глюкозы в крови, при осветлении и хранении контактных линз. При лечении ревматоидных заболеваний широко используют дифосфонаты. Они особенно эффективны в качестве противоартрит-ных средств в сочетании с противовоспалительными средствами.

7.12. КОМПЛЕКСЫ С МАКРОЦИКЛИЧЕСКИМИ СОЕДИНЕНИЯМИ

Среди природных комплексных соединений особое место занимают макрокомплексы на основе циклических полипептидов, содержащих внутренние полости определенных размеров, в которых находится несколько кислородсодержащих групп, способных связывать катионы тех металлов, в том числе натрия и калия, размеры которых соответствуют размерам полости. Такие вещества, находясь в биологи-

Рис. 7.2. Комплекс валиномицина с ионом K +

ческих материалах, обеспечивают транспорт ионов через мембраны и поэтому называются ионофорами. Например, валиномицин транспортирует ион калия через мембрану (рис. 7.2).

С помощью другого полипептида - грамицидина А осуществляется транспорт катионов натрия по эстафетному механизму. Этот полипептид свернут в «трубочку», внутренняя поверхность которой выстлана кислородсодержащими группами. В результате получается

достаточно большой длины гидрофильный канал с определенным сечением, соответствующим размеру иона натрия. Ион натрия, входя в гидрофильный канал с одной стороны, передается от одной к другой кислородным группировкам, подобно эстафете по ионопроводящему каналу.

Итак, циклическая молекула полипептида имеет внутримолекулярную полость, в которую может войти субстрат определенного размера, геометрии по принципу ключа и замка. Полость таких внутренних рецепторов окаймлена активными центрами (эндорецепто-рами). В зависимости от природы иона металла может происходить нековалентное взаимодействие (электростатическое, образование водородных связей, ван-дер-ваальсовы силы) со щелочными металлами и ковалентное со щелочноземельными металлами. В результате этого образуются супрамолекулы - сложные ассоциаты, состоящие из двух частиц или более, удерживаемых вместе межмолекулярными силами.

Наиболее распространены в живой природе тетрадентатные макроциклы - порфины и близкие им по структуре корриноиды. Схематически тетрадентный цикл может быть представлен в следующем виде (рис. 7.3), где дуги означают однотипные углеродные цепи, соединяющие донорные атомы азота в замкнутый цикл; R 1 , R 2 , R 3 , Р 4 -углеводородные радикалы; М n+ - ион металла: в хлорофилле ион Mg 2+ , в гемоглобине ион Fe 2+ , в гемоцианине ион Cu 2+ , в витамине В 12 (кобаламин) ион Со 3+ .

Донорные атомы азота расположены по углам квадрата (обозначены пунктиром). Они жестко скоординированы в пространстве. Поэтому

порфирины и корриноиды образуют прочные комплексы с катионами различных элементов и даже щелочноземельных металлов. Существенно, что независимо от дентатности лиганда химическая связь и строение комплекса определяются донор-ными атомами. Так, например, комплексы меди с NH 3 , этилендиамином и пор-фирином имеют одинаковое квадратное строение и сходную электронную конфигурацию. Но полидентатные лиганды связываются с ионами металлов гораздо сильнее, чем монодентатные лиганды

Рис. 7.3. Тетрадентатный макроцикл

с теми же донорными атомами. Прочность этилендиаминовых комплексов на 8-10 порядков больше, чем прочность тех же металлов с аммиаком.

Бионеорганические комплексы ионов металлов с белками называют биокластерами - комплексами ионов металлов с макроциклическими соединениями (рис. 7.4).

Рис. 7.4. Схематическое изображение структуры биокластеров определенных размеров белковых комплексов с ионами d-элементов. Типы взаимодействий белковой молекулы. М n+ - ион металла активного центра

Внутри биокластера имеется полость. В нее входит металл, который взаимодействует с донорными атомами связывающих групп: ОН - , SH - , COO - , -NH 2 , белков, аминокислот. Наиболее известные металлофер-

менты (карбоангидраза, ксантиноксидаза, цитохромы) представляют собой биокластеры, полости которых образуют центры ферментов, содержащие Zn, Mo, Fe соответственно.

7.13. МНОГОЯДЕРНЫЕ КОМПЛЕКСЫ

Гетеровалентные и гетероядерные комплексы

Комплексы, в состав которых входит несколько центральных атомов одного или различных элементов, называют многоядерными. Возможность образования многоядерных комплексов определяется способностью некоторых лигандов связываться с двумя или тремя ионами металлов. Такие лиганды называются мостиковыми. Соответственно мостиковыми называются и комплексы. Принципиально возможны и одноатомные мостики, например:

В них используются неподеленные электронные пары, принадлежащие одному и тому же атому. Роль мостиков могут исполнять многоатомные лиганды. В таких мостиках используются неподелен-ные электронные пары, принадлежащие разным атомам полиатомного лиганда.

А.А. Гринберг и Ф.М. Филинов исследовали мостиковые соединения состава , в которых лиганд связывает комплексные соединения одного и того же металла, но в различных степенях окисления. Г. Таубе назвал их комплексами переноса электрона. Он исследовал реакции переноса электрона между центральными атомами различных металлов. Систематические исследования кинетики и механизма окислительно-восстановительных реакций привели к заключению, что перенос электрона между двумя комплексами про-

исходит через образующийся лигандный мостик. Обмен электроном между 2 + и 2 + происходит через образование промежуточного мостикового комплекса (рис. 7.5). Перенос электрона происходит через хлоридный мостиковый лиганд, заканчиваясь образованием комплексов 2 +; 2 +.

Рис. 7.5. Перенос электрона в промежуточном многоядерном комплексе

Большое разнообразие полиядерных комплексов получено благодаря использованию органических лигандов, содержащих несколько донорных групп. Условием их образования является такое расположение донорных групп в лиганде, которое не позволяет замыкаться хелатным циклам. Нередки случаи, когда лиганд имеет возможность замыкать хелатный цикл и одновременно выступать в роли мостико-вого.

Действующим началом переноса электрона являются переходные металлы, проявляющие несколько устойчивых степеней окисления. Это придает ионам титана, железа и меди идеальные свойства переносчиков электронов. Совокупность вариантов образования гетерова-лентных (ГВК) и гетероядерных комплексов (ГЯК) на основе Ti и Fe представлена на рис. 7.6.

Реакцию

Реакция (1) называется перекрестной реакцией. В обменных реакциях интермедиатом будут гетеровалентные комплексы. Все теоретически возможные комплексы действительно образуются в растворе в тех или иных условиях, что доказано различными физико-химическими

Рис. 7.6. Образование гетеровалентных комплексови гетероядерных комплексов, содержащих Ti и Fe

методами. Для осуществления переноса электронов реагенты должны находиться в близких по энергии состояниях. Это требование называется принципом Франка-Кондона. Перенос электрона может происходить между атомами одного переходного элемента, находящихся в разной степени окисления ГВК, или различных элементов ГЯК, природа металлоцен-тров которых различна. Эти соединения можно определить как комплексы переноса электронов. Они являются удобными переносчиками электронов и протонов в биологических системах. Присоединение и отдача электрона вызывает изменения лишь электронной конфигурации металла, не изменяя структуру органической составляющей комплекса. Все эти элементы имеют несколько устойчивых степеней окисления (Ti +3 и +4; Fe +2 и +3; Cu +1 и +2). По нашему мнению, этим системам предоставлена природой уникальная роль обеспечения обратимости биохимических процессов с минимальными энергетическими затратами. К обратимым реакциям относят реакции, имеющие термодинамические и термохимические константы от 10 -3 до 10 3 и с небольшим значением ΔG o и Е o процессов. В данных условиях исходные вещества и продукты реакции могут находиться в соизмеримых концентрациях. При изменении их в некотором диапазоне легко можно достичь обратимости процесса, поэтому в биологических системах многие процессы носят колебательный (волновой) характер. Окислительно-восстановительные системы, имеющие в своем составе вышеуказанные пары, перекрывают широкий диапазон потенциалов, что позволяет им вступать во взаимодействия, сопровождающиеся умеренными изменениями ΔG o и Е° , со многими субстратами.

Вероятность образования ГВК и ГЯК значительно повышается, когда раствор содержит потенциально мостиковые лиганды, т.е. молекулы или ионы (аминокислот, гидроксикислот, комплексонов и др.), способные связать сразу два металлоцентра. Возможность делокализации электрона в ГВК способствует понижению полной энергии комплекса.

Более реально совокупность возможных вариантов образования ГВК и ГЯК, в которых природа металлоцентров разная, видна на рис. 7.6. Подробное описание образования ГВК и ГЯК и их роль в биохимических системах рассмотрены в работах А.Н. Глебова (1997). Окислительно-восстановительные пары должны структурно подстроиться друг к другу, тогда перенос становится возможным. Подбирая компоненты раствора, можно «удлинять» расстояние, на которое переносится электрон от восстановителя к окислителю. При согласованном перемещении частиц может происходить перенос электрона на большие расстояния по волновому механизму. В качестве «коридора» может быть гидратированная белковая цепочка и др. Высока вероятность переноса электрона на расстояние до 100А. Длину «коридора» можно увеличить добавками (ионами щелочных металлов, фоновыми электролитами). Это открывает большие возможности в области управления составом и свойствами ГВК и ГЯК. В растворах они играют роль своеобразного «черного ящика», наполненного электронами и протонами. В зависимости от обстоятельств он может отдавать их другим компонентам или пополнять свои «запасы». Обратимость реакций с их участием позволяет многократно участвовать в циклических процессах. Электроны переходят от одного металлического центра к другому, осциллируют между ними. Молекула комплекса остается несимметричной и может принимать участие в окислительно-восстановительных процессах. ГВК и ГЯК активно участвуют в колебательных процессах в биологических средах. Данный тип реакций называют колебательными реакциями. Они обнаружены в ферментативном катализе, синтезе белков и других биохимических процессах, сопутствующих биологическим явлениям. Сюда относятся периодические процессы клеточного метаболизма, волны активности в сердечной ткани, в ткани мозга и процессы, происходящие на уровне экологических систем. Важным этапом обмена веществ является отщепление водорода от питательных веществ. Атомы водорода переходят при этом в ионное состояние, а отделенные от них электроны вступают в дыхательную цепь и отдают свою энергию на образование АТФ. Как нами установлено, комплексонаты титана являются активными переносчиками не только электронов, но и протонов. Способность ионов титана выполнять свою роль в активном центре ферментов типа каталаз, пероксидаз и цитохромов определяется его высокой способностью к комплексообразованию, формированию геометрии координированного иона, образованию многоядерных ГВК и ГЯК различного состава и свойств в функции pH, концентрации переходного элемента Ti и органической составляющей комплекса, их мольного соотношения. Эта способность проявляется в повышении селективности комплекса

по отношению к субстратам, продуктам метаболических процессов, активацией связей в комплексе (ферменте) и субстрате посредством координации и изменения формы субстрата в соответствии со стериче-скими требованиями активного центра.

Электрохимические превращения в организме, связанные с переносом электронов, сопровождаются изменением степени окисления частиц и возникновением окислительно-восстановительного потенциала в растворе. Большая роль в этих превращениях принадлежит многоядерным комплексам ГВК и ГЯК. Они являются активными регуляторами свободнорадикальных процессов, системой утилизации активных форм кислорода, перекиси водорода, окислителей, радикалов и участвуют в окислении субстратов, а также в поддержании антиоокислительного гомеостаза, в защите организма от окислительного стресса. Их ферментативное действие на биосистемы аналогично ферментам (цитохро-мам, супероксиддисмутазе, каталазе, пероксидазе, глутатион-редуктазе, дегидрогеназам). Все это указывает на высокие антиоксидантные свойства комплексонатов переходных элементов.

7.14. ВОПРОСЫ И ЗАДАЧИ ДЛЯ САМОПРОВЕРКИ ПОДГОТОВЛЕННОСТИ К ЗАНЯТИЯМ И ЭКЗАМЕНАМ

1.Дать понятие о комплексных соединениях. В чем их отличие от двойных солей, и что у них общее?

2.Составьте формулы комплексных соединений по их названию: аммоний дигидроксотетрахлороплатинат (IV), триамминтринитроко-бальт (III), дайте их характеристику; укажите внутреннюю и внешнюю координационную сферу; центральный ион и степень его окисления: лиганды, их число и дентатность; характер связей. Напишите уравнение диссоциации в водном растворе и выражение для константы устойчивости.

3.Общие свойства комплексных соединений, диссоциация, устойчивость комплексов, химические свойства комплексов.

4.Как реакционная способность комплексов характеризуется с термодинамических и кинетических позиций?

5.Какие аминокомплексы будут более прочными, чем тетраамино-медь (II), а какие менее прочными?

6.Приведите примеры макроциклических комплексов, образованных ионами щелочных металлов; ионами d-элементов.

7.По какому признаку комплексы относят к хелатным? Приведите примеры хелатных и нехелатных комплексных соединений.

8.На примере глицината меди дайте понятие о внутрикомплексных соединениях. Напишите структурную формулу комплексоната магния с этилендиаминтетрауксусной кислотой в натриевой форме.

9.Приведите схематично структурный фрагмент какого-либо полиядерного комплекса.

10.Дайте определение полиядерных, гетероядерных и гетерова-лентных комплексов. Роль переходных металлов в их образовании. Биологическая роль данных компонентов.

11.Какие типы химической связи встречаются в комплексных со единениях?

12.Перечислите основные типы гибридизации атомных орбиталей, которые могут возникать у центрального атома в комплексе. Какова геометрия комплекса в зависимости от типа гибридизации?

13.Исходя из электронного строения атомов элементов s-, p- и d-блоков сопоставить способность к комплексообразованию и их место в химии комплексов.

14.Дайте определение комплексонов и комплексонатов. Приведите примеры наиболее используемых в биологии и медицине. Приведите термодинамические принципы, на которых основана хелатотерапия. Применение комплексонатов для нейтрализации и элиминации ксенобиотиков из организма.

15.Рассмотрите основные случаи нарушения металлолигандного гомеостаза в организме человека.

16.Приведете примеры биокомплексных соединений, содержащих железо, кобальт, цинк.

17.Примеры конкурирующих процессов с участием гемоглобина.

18.Роль ионов металлов в ферментах.

19.Объясните, почему для кобальта в комплексах со сложными лигандами (полидентатными) более устойчива степень окисления +3, а в обычных солях, таких, как галогениды, сульфаты, нитраты, степень окисления +2?

20.Для меди характерны степени окисления +1 и +2. Может ли медь катализировать реакции с переносом электронов?

21.Может ли цинк катализировать окислительно-восстановительные реакции?

22.Каков механизм действия ртути как яда?

23.Укажите кислоту и основание в реакции:

AgNO 3 + 2NH 3 = NO 3 .

24.Объясните, почему в качестве лекарственнного препарата применяется калиево-натриевая соль гидроксиэтилидендифосфоновой кислоты, а не ОЭДФ.

25.Как с помощью ионов металлов, входящих в состав биокомплексных соединений, осуществляется транспорт электронов в организме?

7.15. ТЕСТОВЫЕ ЗАДАНИЯ

1. Степень окисления центрального атома в комплексном ионе 2- равна:

а)-4;

б)+2;

в)-2;

г)+4.

2. Наиболее устойчивый комплексный ион:

а) 2- , Кн = 8,5х10 -15 ;

б) 2- , Кн = 1,5х10 -30 ;

в) 2- , Кн = 4х10 -42 ;

г) 2- , Кн = 1х10 -21 .

3. В растворе содержится 0,1 моль соединения PtCl 4 4NH 3 . Реагируя с AgNO 3 , оно образует 0,2 моль осадка AgCl. Придайте исходному веществу координационную формулу:

а)Cl;

б)Cl 3 ;

в)Cl 2 ;

г)Cl 4 .

4. Какую форму имеют комплексы, образованные в результате sp 3 d 2 -ги- бридизации?

1)тетраэдра;

2)квадрата;

4)тригональной бипирамиды;

5)линейную.

5. Подберите формулу для соединения пентаамминхлорокобальт (III) сульфат:

а) Na 3 ;

6)[СоСl 2 (NH 3) 4 ]Сl;

в)К 2 [Со(SСN) 4 ];

г)SO 4 ;

д)[Со(Н 2 О) 6 ] С1 3 .

6. Какие лиганды являются полидентатными?

а)С1 - ;

б)H 2 O;

в)этилендиамин;

г)NH 3 ;

д)SCN - .

7. Комплексообразователи - это:

а)атомы-доноры электронных пар;

в)атомы- и ионы-акцепторы электронных пар;

г)атомы- и ионы-доноры электронных пар.

8. Наименьшей комплексообразующей способностью обладают элементы:

а)s; в) d;

б) p ; г) f

9. Лиганды - это:

а)молекулы-доноры электронных пар;

б)ионы-акцепторы электронных пар;

в)молекулы- и ионы-доноры электронных пар;

г)молекулы- и ионы-акцепторы электронных пар.

10. Связь во внутренней координационной сфере комплекса:

а)ковалентная обменная;

б)ковалентная донорно-акцепторная;

в)ионная;

г)водородная.

11. Лучшим комплексообразователем будет являться: