Все о тюнинге авто

Полимеры и электротехническая медь. Полимеры, получаемые по реакции поликонденсации Сущность реакций полимеризации и поликонденсации

При реакции полимеризации на выходе получают только полимеры. В ходе поликонденсации продуктом реакций становится полимеры и низкомолекулярные вещества.

Определение

В процессе полимеризации последовательно соединяются как одинаковые, так и различные молекулы мономеров, выстраивая одну сложную молекулу полимера (высокомолекулярного вещества) без выделения и образования побочных продуктов – низкомолекулярных соединений. Поэтому на выходе получают полимер с точно таким же элементарным составом, что и мономер.

В процессе поликонденсации молекулы одного либо нескольких мономеров, соединяясь между собой, образуют макромолекулу полимера и побочно выделяют тот или иной низкомолекулярный продукт (воду, спирт, хлороводород или аммиак). Поликонденсация лежит в основе биосинтеза целлюлозы, нуклеиновых кислот и, конечно, белков.

Сравнение

Эти два процесса схожи тем, что в его начале в реакцию вступает исходный мономер. А дальше при полимеризации в реакционной системе на всех стадиях текущего процесса присутствуют увеличивающиеся активные цепи, исходный мономер и закончившие рост макромолекулы. А в процессе поликонденсации мономер, как правило, исчерпывается на начальных стадиях происходящей реакции, и в дальнейшем в системе остаются лишь полимеры (олигомеры), взаимодействующие один с другим.

Для полимеризации и поликонденсации одинаково важна реакционная способность нужных мономеров и, конечно, их строение. В ходе полимеризации реакции, возникающие между увеличивающимися молекулами, как правило заканчиваются обрывом цепей.

А при поликонденсации реакции, протекающие между увеличивающимися молекулами, – это основные реакции роста полимерных цепей. Длинные цепи формируются за счет взаимодействия олигомеров. Полимеризация протекает по трем стадиям: инициированию, росту цепи и обрыву цепи. При этом центрами роста полимерной цепи являются катионы, свободные радикалы или анионы. Функциональность (количество реакционных центров в молекуле) влияет на образование трехмерных, разветвленных или линейных макромолекул.

Выводы сайт

  1. Для поликонденсации характерно выделением побочных продуктов – низкомолекулярных веществ, таких как вода или спирт.
  2. При полимеризации продуктами реакции становятся только полимеры.
  3. Биосинтез целлюлозы, белков и нуклеиновых кислот возможен благодаря реакции поликонденсации.

Полимеры.

Полимеры (греч. πολύ- - много; μέρος - часть) - это сложные вещества, молекулы которых построены из множества повторяющихся элементарных звеньев – мономеров .


Полимеры являются высокомолекулярными соединениями с большими молекулярными весами (порядка сотен, тысяч и миллионов).


Следующие два процесса приводят к Образованию высокомолекулярных соединений:


1. Реакция полимеризации,

2. Реакция поликонденсации.

Реакция полимеризации

Реакция полимеризации – процесс, в результате которого молекулы низкомолекулярного соединения (мономера ) соединяются друг с другом, образуя новое вещество (полимер ), молекулярный вес которого в целое число раз больше, чем у мономера.


Полимеризация , главным образом, характерна для соединений с кратными связями (двойной или тройной). Кратные связи в ходе реакции полимеризации преобразуются в простые (одинарные). Высвободившиеся в результате этого преобразования валентные электроны идут на установление ковалентных связей между мономерами.


Примером реакции полимеризации может служить образование полиэтилена из этилена:



Или в общем виде:



Характерной чертой этой реакции является то, что в результате образуется только вещество полимера и никаких побочных веществ, при этом, не выделяется . Этим объясняется кратность весов полимера и исходных мономеров.

Реакция поликонденсации

Реакция поликонденсации – процесс образования полимера из низкомолекулярных соединений (мономеров).


Но в данном случае мономеры содержат две или несколько функциональных групп, которые в ходе реакции теряют свои атомы, из которых образуются другие вещества (вода, аммиак, галогеноводороды и т.д.).


Таким образом, состав элементарного звена полимера отличается от состава исходного мономера, а в ходе реакции поликонденсации мы получаем не только сам полимер, но и другие вещества .


Пример реакции поликонденсации – образование капрона из аминокапроновой кислоты :



В ходе этой реакции аминогруппа (-NH 2 ) теряет один атом водорода, а карбоксильная группа (-СООН ) лишается входящей в неё гидроксильной группы (-ОН ). Отделившиеся от мономеров ионы образуют молекулу воды.

Природные полимеры

Примерами природных высокомолекулярных соединений (полимеров) могут служить полисахариды крахмал и целлюлоза , построенные из элементарных звеньев, являющихся остатками моносахарида (глюкозы ).


Кожа, шерсть, хлопок, шелк – всё это природные полимеры.



Крахмал образуется в результате фотосинтеза, в листьях растений, и запасается в клубнях, корнях, зёрнах.


Крахмал – белый (под микроскопом зернистый) порошок, нерастворимый в холодной воде, в горячей - набухает, образуя коллоидный раствор (крахмальный клейстер).


Крахмал представляет собой смесь двух полисахаридов, построенных из амилозы (10-20%) и амилопектина (80-90%).


Гликоген


Гликоген – полимер, в основе которого лежит мономер мальтоза.


В животных организмах гликоген является структурным и функциональным аналогом растительного крахмала.


Гликоген является основной формой хранения глюкозы в животных клетках.


Гликоген образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы.


По строению гликоген подобен амилопектину , но имеет ещё большее разветвление цепей.



(или клетчатка) – наиболее распространённый растительный полисахарид. Она обладает большой механической прочностью и выполняет роль опорного материала растений.


Наиболее чистая природная целлюлоза – хлопковое волокно – содержит 85-90% целлюлозы. В древесине хвойных деревьев целлюлозы содержится около 50%.



Белки – полимеры, элементарные звенья которых представляют собой остатки аминокислот.


Десятки, сотни и тысячи молекул аминокислот, образующих гигантские молекулы белков, соединяются друг с другом, выделяя воду за счёт карбоксильных и аминогрупп. Структуру такой молекулы можно представить так:



Белки – природные высокомолекулярные азотосодержащие органические соединения. Они играют первостепенную роль во всех жизненных процессах, являются носителями жизни. Белки содержатся во всех тканях организмов, в крови, в костях.


Белки содержатся во всех тканях организмов, в крови, в костях. Энзимы (ферменты), многие гормоны представляют собой сложные белки.


Белок , так же как углеводы и жиры, - важнейшая необходимая часть пищи.


Природный каучук


Натуральный (природный) каучук – полимер на основе мономера изопрена .

Природный каучук содержится в млечном соке каучуконосных растений, главным образом, тропических (например, бразильского дерева гевея).


Другой природный продукт – гуттаперча – также является полимером изопрена, но с иной конфигурацией молекул.


Сырой каучук липок непрочен, а при небольшом понижении температуры становится хрупким.


Чтобы придать изготовленным из каучука изделиям необходимую прочность и эластичность, каучук подвергают вулканизации – вводят в него серу и затем нагревают. Вулканизированный каучук называется резиной .

Синтетические полимеры

Синтетические полимеры - это разнообразные материалы, обычно получаемые из дешёвого и доступного сырья. На их основе получают пластические массы (пластмассы), искусственные и синтетические волокна и пр.


Пластмассы – сложные композиции, в которые вводят различные наполнители и добавки, придающие полимерам необходимый комплекс технических свойств.


Полимеры и пластмассы на их основе, являются ценными заменителями многих природных материалов (металла, дерева, кожи, клеев и т.д.).


Синтетические волокна успешно заменяют натуральные – шёлковые, шерстяные, хлопчатобумажные.


При этом важно подчеркнуть, что по ряду свойств материалы на основе синтетических полимеров часто превосходят природные. Можно получать пластмассы, волокна и другие соединения с комплексом заданных технических свойств. Это позволяет решать многие задачи современной техники, которые не могли быть решены при использовании только природных материалов.

Полимеризационные смолы

К полимеризационным смолам относят полимеры, получаемые реакцией полимеризации преимущественно этиленовых углеводородов или их производных.

Примеры полимеризационных смол: полиэтилен, полипропилен, полистирол, поливинилхлорид и пр.


Полиэтилен.


Полиэтилен – полимер, образующийся при полимеризации этилена.



Или сокращённо:



Полиэтилен – предельный углеводород с молекулярным весом от 10000 до 400000. Он представляет собой бесцветный полупрозрачный в тонких слоях и белый в толстых слоях. Полиэтилен - воскообразный, но твёрдый материал с температурой плавления 110-125 градусов С. Обладает высокой химической стойкостью и водонепроницаемостью, малой газопроницаемостью.


Его применяют в качестве электроизоляционного материала, а также для изготовления плёнок, используемых в качестве упаковочного материала, посуды, шлангов и т.д.


Свойства полиэтилена зависят от способа его получения. Полиэтилен высокого давления обладает меньшей плотностью и меньшим молекулярным весом (10000- 45000), чем полиэтилен низкого давления (молекулярный вес 70000- 400000), что сказывается на технических свойствах.


Для контакта с пищевыми продуктами допускается только полиэтилен высокого давления, так как полиэтилен низкого давления может содержать остатки катализаторов – вредные для здоровья человека соединения тяжёлых металлов.


Полипропилен.


Полипропилен – полимер пропилена, следующего за этиленом гомолога непредельных этиленовых углеводородов.


По внешнему виду это каучукоподобная масса, более или менее твёрдая и упругая.


Отличается от полиэтилена более высокой температурой плавления.


Полипропилен используют для электроизоляции, для изготовления защитных плёнок, труб шлангов, шестерён, деталей приборов, высокопрочного и химически стойкого волокна. Последнее применяют в производстве канатов, рыболовных сетей и т.д.


Плёнки из полипропилена значительно прозрачнее и прочнее полиэтиленовых. Пищевые продукты в упаковке из полипропилена можно подвергать температурной обработке (варке и разогреванию и пр.).


Полистирол


Полистирол образуется при полимеризации стирола:


Он может быть получен в виде прозрачной стеклообразной массы.


Применяется как органическое стекло, для изготовления промышленных товаров (пуговиц, гребней и т.п.).


Искусственный каучук


Отсутствие в нашей стране природного каучука вызвало необходимость в разработке искусственного метода получения этого важнейшего материала. Советскими химиками был найден и впервые в мире осуществлён (1928-1930) в прмышленном маштабе способ получения синтетического каучука.


Исходным материалом для производства синтетического каучука служит непредельный углеводород бутадиен или дивинил, который полимеризуется подобно изопрену.


Исходный бутадиен получают из этилового спирта или бутана, попутного нефтяного газа.

Конденсационные смолы

К конденсационным смолам относят полимеры, получаемые реакцией поликонденсации. Например:

  • фенолформальдегидные смолы,
  • полиэфирные смолы,
  • полиамидные смолы и т.д.

Фенолформальдегидные смолы


Эти высокомолекулярные соединения образуются в результате взаимодействия фенола (С 6 Н 5 ОН ) с формальдегидом (СН 2 =О ) в присутствии кислот или щелочей в качестве катализаторов.



Фенолформальдегидные смолы обладают замечательным свойством: при нагревании они вначале размягчаются, а при дальнейшем нагревании затвердевают.


Из этих смол готовят ценные пластмассы – фенолопласты . Смолы смешивают с различными наполнителями (древесной мукой, измельчённой бумагой, асбестом, графитом и т.д.), с пластификаторами, красителями и из полученной массы изготавливают методом горячего прессования различные изделия.


Полиэфирные смолы


Примером таких смол может служить продукт поликонденсации двухосновной ароматической терефталевой кислоты с двухатомным спиртом этиленгликолем .


В результате получается полиэтилентерефталат – полимер, в молекулах которого многократно повторяется группировка сложного эфира.


В нашей стране эту смолу выпускают под названием лавсан (за рубежём – терилен, дакрон).


Из неё изготавливают волокно, напоминающее шерсть, но значительно более прочное, дающее несминаемые ткани.


Лавсан обладает высокой термо-, влаго-, и свтостойкостью, устойчив к действию щелочей, кислот и окислителей.


Полиамидные смолы


Полимеры этого типа являются синтетическими аналогами белков. В их цепях имеются такие же, как в белках, многократно повторяющиеся амидные –СО–NH– группы. В цепях молекул белков они разделены звеном из одного С -атома, в синтетических полиамидах – цепочкой из четырёх и более С -атомов.


Волокна, полученные из синтетических смол, - капрон , энант и анид – по некоторым свойствам значительно превышают натуральный шёлк.


Из них вырабатывают красивые, прочные ткани и трикотаж. В технике используют изготовленные из капрона или анида верёвки, канаты, отличающиеся высокой прочностью. Эти полимеры применяют также в качестве основы автомобильных шин, для изготовления сетей, различных технических изделий.


Капрон является поликонденсатом аминокапроновой кислоты , содержащей цепь из шести атомов углерода:


Энант – поликонденсат аминоэнантовой кислоты, содержащий цепь из семи атомов углерода.


Анид (найлон и перлон ) получается поликонденсацией двухосновной адипиновой кислоты НООС-(СН 2) 4 -СООН и гексаметилендиамина NН 2 -(СН 2) 6 - NН 2 .

Для всех реакций полимеризации основным условием является наличие мономера, способного, вследствие химического взаимодействия, создавать связи с другими молекулами мономера. Такая способность называется «функциональностью». Различные мономеры имеют возможность образовывать химические связи по различным механизмам. На различии этих механизмов основаны системы классификации реакций полимеризации.

Существует четыре основных типа реакций полимеризации : полиприсоединение, поликонденсация, цепная полимеризация и ступенчатая полимеризация. Рассмотрим эти реакции подробнее.

Реакции присоединения vs поликонденсация

Реакцию полимеризации можно отнести к реакции присоединения в случае, когда весь мономер целиком становится частью образующейся макромолекулы. Таким образом, химическая формула каждого отдельно взятого звена полимера будет совпадать со структурой использованного мономера. Например, когда этилен полимеризуется в полиэтилен, каждая молекула этилена становится частью макромолекулы полиэтилена. Мономеры присоединяются к активному центру макромолекулы.

Как видно на схеме, мономер обладает двумя атомами углерода и четырьмя атомами водорода, простейшее звено полимерной цепи имеет ту же структуру, в отличие от продуктов реакций поликонденсации.

К реакциям поликондесации относятся такие процессы полимеризации, вследствие которых часть молекулы мономера отбрасывается, что позволяет этой молекуле образовать химическую связь. Чаще всего в реакциях поликонденсации основному продукту сопутствуют такие продукты как вода или соляная кислота.

Типичным примером реакции поликонденсации является образование нейлона, в качестве продукта взаимодействия адипоилхлорида с гексаметилендиамином.

Как видно из схемы, атомы хлора и водорода отсоединяются от мономеров и образуют побочный продукт реакции – соляную кислоту. Так как конечная масса полимерной молекулы меньше чем суммарная масса мономеров, вступивших в химическое взаимодействие говорят, что масса полимера сократилась (condensed), отсюда название реакции – конденсация.

Цепная полимеризация vs ступенчатая полимеризация

Второй важной группой рассматриваемого процесса являются реакции цепной и ступенчатой полимеризации.

При цепном механизме реакций полимеризации, молекулы мономеров по одной присоединяются к растущей полимерной макромолекуле. Рассмотрим механизм реакции цепной полимеризации на примере анионной полимеризации стирола:

Как следует из схем реакции выше, в процессе полимеризации стирола, только мономеры стирола могут присоединяться (1) к растущей цепи полистирола. Две растущие цепи (2) не вступают во взаимодействие. Это основная особенность реакции цепной полимеризации, которая отличает данный процесс от ступенчатой полимеризации.

Ступенчатая полимеризация представляет из себя несколько более сложный процесс.

Рассмотрим процесс ступенчатой полимеризации на примере взаимодействия двух мономеров: терефталоилхлорида и этиленгликоля. Взаимодействие этих двух компонентов приводит к образованию полиэфира, который называется полиэтилентерефталат.

На первой стадии процесса две молекулы мономеров реагируют с образованием димера:

В то же самое время, димер может прореагировать с еще одной молекулой этиленгликоля.

Или же димер может провзаимодействовать с другим димером с образованием тетрамера:

С ростом олигомерной цепи процесс усложняется – мономеры, димеры, тирмеры, пентамеры и т.д. взаимодействуют друг с другом в случайном порядке до тех пор, пока олигомерная молекула не разрастается в большую полимерную макромолекулу и пока объемные, стерические, химические и прочие факторы не замедлят рост цепи.

Таким образом, главным отличием цепной полимеризации от ступенчатой является: в ступенчатом процессе растущие молекулы могут взаимодействовать друг с другом с образованием еще более длинных цепей. В цепном процессе, напротив, только лишь мономеры могут поочередно присоединяться к активном центру растущей макромолекулы.

Можно заметить, что приведенная выше реакция синтеза полиэтилетерефталата характеризуется выбросом небольшого количества соляной кислоты, что позволяет классифицировать ее также как реакцию поликонденсации. А приведенная в качестве примера цепной полимеризации реакция синтеза стирола, является также хорошим примером реакции полиприсоединения. Однако, сделать вывод, что все цепные реакции – реакции присоединения, а ступенчатые – реакции поликонденсации будет неверным. Хорошим примером ступенчатой реакции, при этом относящуюся к процессу полиприсоединения, может послужить процесс образования полиуретанов. Эту реакцию имеет смысл рассмотреть поподробнее.

В самом начале процесса получения полимерных уретанов реагируют два простейших компонента цепи:

Вследствие взаимодействия этих компонентов получается димер:

Уретановый димер имеет дверазличные функциональные группы на своих концах – изоцианатную с одной и гидроксильную с другой. Это свойство позволяет димеру реагировать как с другими изоцианатами или спиртами с образованием тримера, так и с другими димерами, тримерами и более высокомолекулярными уретановыми олигомерами.

Реакция продолжается до тех пор, пока растущая макромолекула не набирает достаточный молекулярный вес, чтобы быть классифицированной как полиуретан с общей формулой:

При внимательном рассмотрении структуры конечного продукта (полиуретана), структуры мономеров и схемы химического взаимодействия, можно сделать вывод, что структура мономера сохраняется при переходе в полимерное состояние, а также отсутствуют побочные второстепенные продукты. По этим признакам можно заключить, что данная реакция относится к реакциям полиприсоединения. А способность присоединять не только мономеры, но и тримеры и прочие олигомеры позволяют классифицировать химический процесс как ступенчатую полимеризационную реакцию.

Из всего вышесказанного можно сделать вывод: разделение реакций полимеризации на присоединение, конденсацию, ступенчатые и цепные реакции не случайно, и нельзя поставить знаки равенства между ними. Хорошим примером реакции присоединения, которая одновременно относится к реакциям ступенчатой полимеризации является реакция синтеза полиуретанов.

С ценами на услуги нашей компании можно ознакомиться в разделе

Или закажите консультацию специалиста в удобное для Вас время!

Заявка абсолютно бесплатна и ни к чему Вас не обязывает!

Конденсация - это основа создания полимерных синтетических материалов: поливинилхлорида, олефинов. При использовании базовых вариантов мономеров можно путем сополиконденсации получать миллионы тонн новых полимерных веществ. В настоящее время существуют различные методы, которые позволяют не только создавать вещества, но и влиять на молекулярно-массовое распределение полимеров.

Особенности процесса

Реакция поликонденсации - это процесс получения полимера при стадийном присоединении друг к другу молекул полифункциональных мономеров. При этом происходит выделение низкомолекулярных продуктов.

В качестве основы этого процесса можно рассматривать Благодаря выделению побочных продуктов, существуют отличия в элементарном составе полимера и исходного мономера.

Реакция поликонденсации аминокислоты связана с образованием молекул воды в ходе взаимодействия амино- и карбоксильной группы соседних молекул. В этом случае первая стадия реакции связана с образованием димеров, затем они превращаются в высокомолекулярные вещества.

Реакция поликонденсации, пример которой мы рассматриваем, отличается способностью образования на каждом этапе устойчивых веществ. Получаемые при взаимодействии аминокислот димеры, тримеры и полимеры можно выделять на всех промежуточных стадиях из реакционной смеси.

Итак, поликонденсация - это ступенчатый процесс. Для его протекания нужны молекулы мономеров, в составе которых от двух функциональных групп, способных взаимодействовать между собой.

Наличие функциональных групп позволяет олигомерам реагировать не только между собой, но и с мономерами. Подобное взаимодействие характеризует рост цепи полимера. Если у исходных мономеров по две функциональные группы, цепь растет в одном направлении, что приводит к образованию линейных молекул.

Поликонденсация - это реакция, результатом которой будут продукты, способные к последующему взаимодействию.

Классификация

Реакция поликонденсации, пример которой можно записать для многих органических веществ, дает представление о сложности протекающего взаимодействия.

В настоящее время подобные процессы принято классифицировать по определенным признакам:

  • тип связи между звеньями;
  • количество мономеров, принимающих участие в реакции;
  • механизм процесса.

Чем отличается реакция поликонденсации для разных классов органических веществ? Например, при полиамидировании в качестве исходных компонентов используют амины и карбоновые кислоты. В ходе ступенчатого взаимодействия между мономерами наблюдается образование полимера и молекул воды.

При этерификации исходными веществами являются спирт и карбоновая кислота, а условием получения сложного эфира является применение концентрированной серной кислоты в виде катализатора.

Как происходит поликонденсация? Примеры взаимодействий свидетельствуют о том, что в зависимости от числа мономеров можно выделить гомо- и гетерополиконденсацию. Например, при гомополиконденсации в качестве мономеров будут выступать вещества, имеющие сходные функциональные группы. В этом случае конденсация - это объединение исходных веществ с выделением воды. В качестве примера можно привести реакцию между несколькими аминокислотами, в результате которой будет образовываться полипептид (молекула белка).

Механизм процесса

В зависимости от особенностей протекания выделяют обратимую (равновесную) и необратимую (неравновесную) поликонденсацию. Подобное деление можно объяснить присутствием либо отсутствием деструктивных реакций, которые предполагают использование низкомолекулярных процессов, различной активности мономеров, а также допускают отличия в кинетических и термодинамических факторах. Для таких взаимодействий характерны невысокие константы равновесия, незначительная скорость процесса, длительность реакции, высокие температуры.

Во многих случаях для необратимых процессов характерно использование мономеров, отличающихся высокой реакционной способностью.

Высокие скорости процесса с применением мономера такого типа объясняют выбор низкотемпературной и межфазной поликонденсации в растворе. Необратимость процесса обуславливается невысокой температурой реакционной смеси, получением малоактивного химического вещества. В органической химии есть и такие варианты неравновесной поликонденсации, которые протекают в расплавах при высоких температурах. Примером такого процесса является процесс получения из диолов и дигалогенпроизводных полиэфиров.

Уравнение Карозерса

Глубина поликонденсации связана с тщательностью удаления из реакционной среды продуктов низкомолекулярного вида, которые мешают смещению процесса в сторону образования полимерного соединения.

Между глубиной процесса и степенью полимеризации есть зависимость, которая была объединена в математическую формулу. При реакции поликонденсации происходит исчезновение двух функциональных групп и одной молекулы мономера. Так как за время прохождения процесса происходит расходование какого-то количества молекул, глубина реакции связана с долей прореагировавших функциональных групп.

Чем больше будет взаимодействие, тем выше окажется степень полимеризации. Глубина процесса характеризуется продолжительностью реакции, величиной макромолекул. Чем отличается полимеризация от поликонденсации? В первую очередь характером протекания, а также скоростью процесса.

Причины прекращения процесса

Остановка роста цепи полимера вызывается различными причинами химического и физического характера. В качестве основных факторов, способствующих остановке процесса синтеза полимерного соединения, выделим:

  • повышение вязкости среды;
  • снижение скорости процесса диффузии;
  • уменьшение концентрации взаимодействующих веществ;
  • понижение температуры.

При повышении вязкости реакционной среды, а также понижении концентрации функциональных групп идет снижение вероятности столкновения молекул с последующей остановкой процесса роста.

Среди химических причин торможения поликонденсации лидируют:

  • изменение химического состава функциональных групп;
  • непропорциональное количество мономеров;
  • присутствие в системе низкомолекулярного продукта реакции;
  • равновесие между прямой и обратной реакциями.

Специфика кинетики

Реакции полимеризации и поликонденсации связаны с изменением скорости взаимодействия. Проанализируем основные кинетические процессы на примере процесса полиэтерификации.

Кислотный катализ протекает в две стадии. Сначала наблюдается протонирование кислоты - исходного реагента кислотой, выступающей в роли катализатора.

В ходе атаки реагентом спиртовой группы происходит распад интермедиата до продукта реакции. Для протекания прямой реакции важно своевременно удалять из реакционной смеси молекулы воды. Постепенно наблюдается уменьшение скорости процесса, вызываемое увеличением относительной молекулярной массы продукта поликонденсации.

В случае применения эквивалентных количеств функциональных групп на концах молекул взаимодействие может осуществляться длительный промежуток времени, пока не будет создана гигантская макромолекула.

Варианты проведения процессов

Полимеризация и поликонденсация - это важные процессы, используемые в современном химическом производстве. Выделяют несколько лабораторных и промышленных способов проведения процесса поликонденсации:

  • в растворе;
  • в расплаве;
  • в виде межфазного процесса;
  • в эмульсии;
  • на матрицах.

Реакции в расплавах необходимы для получения полиамидов и полиэфиров. В основном в расплаве равновесная поликонденсация протекает в две стадии. Сначала взаимодействие осуществляется в вакууме, что позволяет избежать термоокислительной деструкции мономеров, а также продуктов поликонденсации, гарантирует постепенное нагревание реакционной смеси, полное удаление низкомолекулярных продуктов.

Важные факты

Большая часть реакций проводится без использования катализатора. Вакуумирование расплава на второй стадии реакции сопровождается полной очисткой полимера, поэтому нет необходимости дополнительно проводить трудоемкий процесс переосаждения. Не допускается резкого повышения температуры на первом этапе взаимодействия, поскольку это может привести к частичному испарению мономеров, нарушению количественного соотношения взаимодействующих реагентов.

Полимеризация: особенности и примеры

Данный процесс характеризуется использованием одного исходного мономера. Например, путем такой реакции можно получать полиэтилен из исходного алкена.

Особенностью полимеризации является формирование крупных молекул полимера с заданным количеством повторяющихся структурных звеньев.

Заключение

Путем поликонденсации можно получить множество полимеров, востребованных в различных современных производствах. Например, в ходе этого процесса можно выделить фенолформальдегидные смолы. Взаимодействие формальдегида и фенола сопровождается образованием на первом этапе промежуточного соединения (фенолспирта). Затем наблюдается конденсация, приводящая к получению высокомолекулярного соединения - фенолформальдегидной смолы.

Полученный путем поликонденсации продукт нашел свое применение в создании множества современных материалов. Фенопласты, в основе которых есть данное соединение, обладают прекрасными теплоизоляционными характеристиками, поэтому востребованы в строительстве.

Полиэфиры, полиамиды, полученные путем поликонденсации, используют в медицине, технике, химическом производстве.

Поликонденсация - это процесс образования , протекающий по механизму замещения и обычно сопровождающийся выделением низкомолекулярных побочных продуктов. Поэтому элементный состав полимера отличается от элементного состава исходных веществ.

Поликонденсация является важнейшим методом синтеза полимеров, широко используемым в технологии пластических масс.

Общие закономерности реакции поликонденсации равновесная и неравновесная

В реакцию поликонденсации могут вступать исходные соединения (), содержащие две или более функциональные группы. При взаимодействии этих групп происходит отщепление молекулы низкомолекулярного соединения, с образованием новой группы, которая связывает остатки реагирующих молекул. Типичным примером такой реакции может служить поликонденсация , в результате которой образуются полиамиды :

Поликонденсация представляет собой ступенчатый процесс.
Рост цепи происходит в результате взаимодействия мономера друг с другом, а также с промежуточными продуктами: олигомерными или полимерными молекулами - или при взаимодействии олигомерных или полимерных молекул между собой. В поликонденсационной системе мономеры расходуются довольно быстро после начала реакции, однако увеличение полимера происходит в течение всего процесса. Этим поликонденсация резко отличается от цепной полимеризации. На рис. 1 дана качественная картина возрастания молекулярной массы и изменения молекулярно-массового распределения (ММР) в процессе поликонденсации.

Среднечисловая и среднемассовая масса возрастают с увеличением степени завершенности реакции р в соответствии с уравнениями:

Где m - молекулярная масса элементарного звена полимера, р -изменяется.

Поэтому для получения высокомолекулярных полимеров методами поликонденсации необходимо проводить реакцию до высоких значений степени завершенности (р ->1 ) .

Коэффициент полидисперсности определяется соотношением среднемассовой и среднечисловой молекулярных масс и в случае наиболее вероятного ММР равен:

При степени завершенности реакции поликонденсации, равной 1, коэффициент полидисперсности:

Реакция, в которой участвуют однородные молекулы называется гомополиконденсацией . Однако в большинстве случаев поликонденсация протекает с участием разнородных молекул:Такие реакции называют реакциями гетерополиконденсации . Различают равновесную и неравновесную поликонденсацию. Для равновесной поликонденсации константа равновесия Кр≤1000 , для неравновесной поликонденсации константы равновесия Кр>1000 .

Примером равновесной поликонденсации является образование полиэфиров или полиамидов при нагревании дикарбоновых кислот с гликолями или диаминами. Примером неравновесной поликонденсации может служить реакция образования полиамидов или полиэфиров при поликонденсации хлорангидридов дикарбоновых кислот с диаминами или бисфенолами.

В зависимости от функциональности исходных мономеров, т. е. от числа реакционноспособных групп в молекуле, а также от их природы, при поликонденсации образуются различные продукты.

При поликонденсации бифункциональных соединений образуются линейные полимеры. В общем виде реакция может быть описана уравнением:

Если одно или оба исходных соединения являются три- или более функциональными, то в результате реакции образуются полимеры разветвленного и сетчатого (трехмерного) строения:

Важным фактором, определяющим , образующегося при поликонденсации двух разнородных , является соотношение функциональных групп. Например, если в реакции участвуют (n+1) моль одного мономера и n молей другого, реакция поликонденсации может быть изображена следующей схемой:

Если число одного мономера превышает число молей другого или наоборот, то избыток одного из мономеров приводит к снижению молекулярной массы полимера. Степень полимеризации Р образующегося полимера определяется этим избытком и может быть рассчитана по уравнению Р = 100q , где q - избыток одного из мономеров, % (мол.).

Эта зависимость молекулярной массы от избытка мономеров носит название правила неэквивалентности функциональных групп.

Монофункциональные соединения не образуют полимеров, но применяя их, можно регулировать молекулярную массу полимеров, получаемых поликонденсацией. Присутствие монофункциональных соединений является чрезвычайно важным фактором, определяющим молекулярную массу образующегося полимера. В этом случае также действует правило неэквивалентности функциональных групп.

Монофункциональное соединение, вступая в реакцию с одной из функциональных групп, участвующих в поликонденсации, блокирует эту группу и ограничивает рост полимерной цепи. Реакция поликонденсации превращается по исчерпании всех функциональных групп, способных взаимодействовать с монофункциональным соединением. При этом функциональные группы другого типа остаются в системе в избытке, эквивалентном количеству введенного монофункционального соединения, как это видно из уравнения:

Степень полимеризации образующегося полимера определяется количеством взятого в реакцию монофункционального соединения и может быть рассчитана по приведенному выше уравнению.

Необходимым условием, обеспечивающим достижение высокой молекулярной массы полимера в реакциях равновесной поликонденсации , является полное удаление низкомолекулярного побочного продукта. В этих случаях молекулярная масса полимера определяется равновесием между образующимися связями макромолекулы полимера, выделяющимся при поликонденсации низкомолекулярным продуктом и свободными функциональными группами мономера (или сомономеров). Поэтому смещение равновесия путем удаления низкомолекулярного продукта способствует получению полимера с большей молекулярной массой, как это видно из уравнения:

Значительное влияние на и молекулярную массу образующегося полимера оказывают условия проведения реакции, а также присутствие катализаторов.

В отсутствие кислотных катализаторов при синтезе сложных полиэфиров реакцией двухосновных карбоновых кислот с диолами одна из молекул кислоты действует как катализатор и скорость процесса описывается уравнением v=k[A] 2 [B] , где [А] - концентрация двухосновной кислоты; [В] - концентрация диола; k - константа скорости реакции.

При эквимольных количествах исходных реагентов, т. е. при [А] = [В] , скорость полиэтерификации равна:

v = k[А] 3 = k [ВР] 3

Из дифференциального уравнения скорости:

интегрированием получаем:

где [А] 0 - начальная концентрация двухосновной кислоты; р -степень завершенности; τ - время реакции; С - константа.

1/(1-р)2 от τ . С повышением температуры увеличивается молекулярная масса-полимера за счет роста константы скорости реакции в соответствии с уравнением:где С - константа.

Однако значительное повышение температуры приводит к нежелательным побочным процессам - разрушению функциональных групп, деструкции и структурированию полимера. При добавлении в систему низкомолекулярных кислот в качестве катализаторов скорость поликонденсации описывается уравнением

v = k [А][В]

и при [А] = [В]

v=k[A] 2 = k[B] 2

Дифференциальное уравнение скорости расходования полимеров:

После интегрирования дает:

Откуда следует линейная зависимость 1/1-р от τ . Для таких процессов поликонденсации, протекающих как реакции второго порядка, средняя степень полимеризации пропорциональна начальной концентрации исходных веществ и времени реакции:

В общем случае при поликонденсации среднечисловая степень полимеризации ¯Р определяется как отношение числа исходных молекул [А] 0 к числу непрореагировавших молекул [А] τ :

[А] τ =[А] 0 (1-р)

где (1- р) -доля непрореагировавших молекул, т. е.:

Таким образом, если р = 0,9 , то среднечисловая степень полимеризации:

Типичные поликонденсационные полимеры приведены в табл. 1.

Способы проведения поликонденсации

В настоящее время известны 4 основных способа проведения процессов поликонденсации:

  • в расплаве;
  • в растворе;
  • межфазная поликонденсация;
  • поликонденсация в твердой фазе.

Поликонденсация в расплаве является в настоящее время наиболее распространенным способом, широко используемым в промышленности для получения ряда полимеров (полиэфиров, полиамидов и др.). Этот способ применяется в тех случаях, когда исходные вещества и синтезируемый полимер устойчивы при температуре плавления и могут выдерживать длительное нагревание в расплавленном состоянии без разложения. Поэтому поликонденсация в расплаве используется для получения полимеров со сравнительно невысокой температурой плавления (до 300 °С). Достоинствами процесса поликонденсации в расплаве являются высокое качество полимера и отсутствие необходимости удалять из полимера растворитель и регенерировать его.

Технология процесса сравнительно проста. Исходные мономеры смешивают и нагревают в реакционном аппарате в течение нескольких часов при температуре выше температуры плавления синтезируемого полимера. Для уменьшения вероятности протекания побочных реакций, например, окисления, процесс проводят обычно в среде инертного газа (азота). Поликонденсацию заканчивают в вакууме для более полной отгонки низкомолекулярного продукта.

Реакцию в расплаве чаще всего используют для проведения равновесной поликонденсации. Иногда в расплаве можно осуществлять и неравновесные процессы. Однако неравновесные процессы сопровождаются значительным тепловыделением, происходящим за сравнительно короткое время, что объясняется довольно большими скоростями процесса и высокими концентрациями исходных веществ. Поэтому для снижения тепловыделения и облегчения управления процессом исходные мономеры вводят в реакционную систему не сразу, а постепенно.

Поликонденсация в растворе позволяет проводить реакцию при более низкой температуре, поэтому этот способ используют в тех случаях, когда исходные компоненты и полимер неустойчивы при температуре плавления.

Реакцию обычно проводят в растворителях, в которых растворимы и исходные вещества, и образующийся полимер. Можно применять растворитель, в котором хорошо растворяются лишь исходные вещества, а полимер плохо растворим или совсем нерастворим. Однако молекулярная масса получаемого при этом полимера, как правило, невысока.

Реакция в растворе при нагревании протекает с довольно высокой скоростью и может быть доведена до глубоких степеней превращения, так как в присутствии растворителя уменьшается вязкость системы, улучшается отвод выделяющегося тепла и обеспечиваются более мягкие условия протекания реакции.

Наиболее глубоко поликонденсация протекает в тех растворителях, в которых выделяющийся низкомолекулярный продукт плохо растворим и легко удаляется отгонкой, особенно если он образует азеотропную смесь.

Низкомолекулярный продукт может быть также удален из сферы реакции за счет образования химического соединения с растворителем или путем добавления веществ, связывающих низкомолекулярный продукт. Этот способ обычно используют при поликонденсации хлорангидридов дикарбоновых кислот с диаминами или двухатомными фенолами при синтезе полиамидов и полиэфиров. Выделяющийся хлористый водород связывают основаниями, например, третичными аминами.

Поликонденсация в растворе имеет некоторые технологические преимущества перед другими способами поликонденсации. Она проводится в более мягких температурных условиях, позволяет исключить местные перегревы за счет более интенсивного теплообмена, не требует применения вакуума и инертного газа, а следовательно, сложной аппаратуры. Однако синтез полимеров этим способом связан с необходимостью проведения таких операций, как приготовление растворов мономеров, регенерация растворителя, промывка полимера, его фильтрация, сушка и т. п.

Способ поликонденсации на поверхности раздела двух несмешивающихся жидких фаз называется межфазной поликонденсацией . В некоторых случаях этот способ применяется для промышленного получения полимеров, например, полиамидов и полиэфиров.

При проведении межфазной поликонденсации исходные мономеры растворяют раздельно в двух несмешивающихся жидкостях. Обычно одной из них является вода, другой - не смешивающийся с водой растворитель, инертный к мономерам.

При синтезе полиамидов и полиэфиров применяют водный раствор диамина или двухатомного фенола (к которому для связывания выделяющегося хлористого водорода добавляют щелочь) и раствор хлорангидрида дикарбоновой кислоты в углеводороде. На границе раздела водной и углеводородной фаз образуется полимер. Для ускорения процесса применяют перемешивание. Полученный полимер отфильтровывают, промывают и высушивают.

Межфазная поликонденсация имеет ряд достоинств, к числу которых можно отнести большие скорости процесса при низких температурах и атмосферном давлении, а также возможность получения высокоплавких полимеров. Однако применение этого способа ограничивается необходимостью использовать мономеры с высокой реакционной способностью и большие объемы растворов исходных реагентов, поскольку при межфазной поликонденсации применяются довольно разбавленные растворы.

Процессы поликонденсации, протекающие исключительно в твердой фазе , в промышленности не применяются. Обычно используются процессы, в которых первая стадия протекает в растворе или расплаве, а последняя стадия - в твердой фазе. Примером такого процесса является трехмерная поликонденсация, широко применяемая в настоящее время в промышленности для получения ряда полимеров (фенолоальдегидных,, и др.).

Список литературы:
Кузнецов Е. В., Прохорова И. П. Альбом технологических схем производства полимеров и пластических масс на их основе. Изд. 2-е. М., Химия, 1975. 74 с.
Кноп А., Шейб В. Фенольные смолы и материалы на их основе. М., Химия, 1983. 279 с.
Бахман А., Мюллер К. Фенопласты. М., Химия, 1978. 288 с.
Николаев А. Ф. Технология пластических масс, Л., Химия, 1977. 366 с.